We initiate a principled study of algorithmic collective action on digital platforms that deploy machine learning algorithms. We propose a simple theoretical model of a collective interacting with a firm's learning algorithm. The collective pools the data of participating individuals and executes an algorithmic strategy by instructing participants how to modify their own data to achieve a collective goal. We investigate the consequences of this model in three fundamental learning-theoretic settings: the case of a nonparametric optimal learning algorithm, a parametric risk minimizer, and gradient-based optimization. In each setting, we come up with coordinated algorithmic strategies and characterize natural success criteria as a function of the collective's size. Complementing our theory, we conduct systematic experiments on a skill classification task involving tens of thousands of resumes from a gig platform for freelancers. Through more than two thousand model training runs of a BERT-like language model, we see a striking correspondence emerge between our empirical observations and the predictions made by our theory. Taken together, our theory and experiments broadly support the conclusion that algorithmic collectives of exceedingly small fractional size can exert significant control over a platform's learning algorithm.
Stochastic gradient methods have been a popular and powerful choice of optimization methods, aimed at minimizing functions. Their advantage lies in the fact that that one approximates the gradient as opposed to using the full Jacobian matrix. One research direction, related to this, has been on the application to infinite-dimensional problems, where one may naturally have a Hilbert space framework. However, there has been limited work done on considering this in a more general setup, such as where the natural framework is that of a Banach space. This article aims to address this by the introduction of a novel stochastic method, the stochastic steepest descent method (SSD). The SSD will follow the spirit of stochastic gradient descent, which utilizes Riesz representation to identify gradients and derivatives. Our choice for using such a method is that it naturally allows one to adopt a Banach space setting, for which recent applications have exploited the benefit of this, such as in PDE-constrained shape optimization. We provide a convergence theory related to this under mild assumptions. Furthermore, we demonstrate the performance of this method on a couple of numerical applications, namely a $p$-Laplacian and an optimal control problem. Our assumptions are verified in these applications.
Denoising Diffusion Models (DDM) are emerging as the cutting-edge technology in the realm of deep generative modeling, challenging the dominance of Generative Adversarial Networks. However, effectively exploring the latent space's semantics and identifying compelling trajectories for manipulating and editing important attributes of the generated samples remains challenging, primarily due to the high-dimensional nature of the latent space. In this study, we specifically concentrate on face rotation, which is known to be one of the most intricate editing operations. By leveraging a recent embedding technique for Denoising Diffusion Implicit Models (DDIM), we achieve, in many cases, noteworthy manipulations encompassing a wide rotation angle of $\pm 30^o$, preserving the distinct characteristics of the individual. Our methodology exploits the computation of trajectories approximating clouds of latent representations of dataset samples with different yaw rotations through linear regression. Specific trajectories are obtained by restricting the analysis to subsets of data sharing significant attributes with the source image. One of these attributes is the light provenance: a byproduct of our research is a labeling of CelebA, categorizing images into three major groups based on the illumination direction: left, center, and right.
We study how the relationship between non-equivalent width parameters changes once we restrict to some special graph class. As width parameters, we consider treewidth, clique-width, twin-width, mim-width, sim-width and tree-independence number, whereas as graph classes we consider $K_{t,t}$-subgraph-free graphs, line graphs and their common superclass, for $t \geq 3$, of $K_{t,t}$-free graphs. We first provide a complete comparison when restricted to $K_{t,t}$-subgraph-free graphs, showing in particular that treewidth, clique-width, mim-width, sim-width and tree-independence number are all equivalent. This extends a result of Gurski and Wanke (2000) stating that treewidth and clique-width are equivalent for the class of $K_{t,t}$-subgraph-free graphs. Next, we provide a complete comparison when restricted to line graphs, showing in particular that, on any class of line graphs, clique-width, mim-width, sim-width and tree-independence number are all equivalent, and bounded if and only if the class of root graphs has bounded treewidth. This extends a resut of Gurski and Wanke (2007) stating that a class of graphs~${\cal G}$ has bounded treewidth if and only if the class of line graphs of graphs in ${\cal G}$ has bounded clique-width. We then provide an almost-complete comparison for $K_{t,t}$-free graphs, leaving one missing case. Our main result is that $K_{t,t}$-free graphs of bounded mim-width have bounded tree-independence number. This result has structural and algorithmic consequences. In particular, it proves a special case of a conjecture of Dallard, Milani\v{c} and \v{S}torgel. Finally, we consider the question of whether boundedness of a certain width parameter is preserved under graph powers. We show that the question has a positive answer for sim-width precisely in the case of odd powers.
A framework to learn a multi-modal distribution is proposed, denoted as the Conditional Quantum Generative Adversarial Network (C-qGAN). The neural network structure is strictly within a quantum circuit and, as a consequence, is shown to represent a more efficient state preparation procedure than current methods. This methodology has the potential to speed-up algorithms, such as Monte Carlo analysis. In particular, after demonstrating the effectiveness of the network in the learning task, the technique is applied to price Asian option derivatives, providing the foundation for further research on other path-dependent options.
As an effective strategy, data augmentation (DA) alleviates data scarcity scenarios where deep learning techniques may fail. It is widely applied in computer vision then introduced to natural language processing and achieves improvements in many tasks. One of the main focuses of the DA methods is to improve the diversity of training data, thereby helping the model to better generalize to unseen testing data. In this survey, we frame DA methods into three categories based on the diversity of augmented data, including paraphrasing, noising, and sampling. Our paper sets out to analyze DA methods in detail according to the above categories. Further, we also introduce their applications in NLP tasks as well as the challenges.
Graph Neural Networks (GNNs) have been shown to be effective models for different predictive tasks on graph-structured data. Recent work on their expressive power has focused on isomorphism tasks and countable feature spaces. We extend this theoretical framework to include continuous features - which occur regularly in real-world input domains and within the hidden layers of GNNs - and we demonstrate the requirement for multiple aggregation functions in this context. Accordingly, we propose Principal Neighbourhood Aggregation (PNA), a novel architecture combining multiple aggregators with degree-scalers (which generalize the sum aggregator). Finally, we compare the capacity of different models to capture and exploit the graph structure via a novel benchmark containing multiple tasks taken from classical graph theory, alongside existing benchmarks from real-world domains, all of which demonstrate the strength of our model. With this work, we hope to steer some of the GNN research towards new aggregation methods which we believe are essential in the search for powerful and robust models.
Deep learning applies multiple processing layers to learn representations of data with multiple levels of feature extraction. This emerging technique has reshaped the research landscape of face recognition since 2014, launched by the breakthroughs of Deepface and DeepID methods. Since then, deep face recognition (FR) technique, which leverages the hierarchical architecture to learn discriminative face representation, has dramatically improved the state-of-the-art performance and fostered numerous successful real-world applications. In this paper, we provide a comprehensive survey of the recent developments on deep FR, covering the broad topics on algorithms, data, and scenes. First, we summarize different network architectures and loss functions proposed in the rapid evolution of the deep FR methods. Second, the related face processing methods are categorized into two classes: `one-to-many augmentation' and `many-to-one normalization'. Then, we summarize and compare the commonly used databases for both model training and evaluation. Third, we review miscellaneous scenes in deep FR, such as cross-factor, heterogenous, multiple-media and industry scenes. Finally, potential deficiencies of the current methods and several future directions are highlighted.
It is important to detect anomalous inputs when deploying machine learning systems. The use of larger and more complex inputs in deep learning magnifies the difficulty of distinguishing between anomalous and in-distribution examples. At the same time, diverse image and text data are available in enormous quantities. We propose leveraging these data to improve deep anomaly detection by training anomaly detectors against an auxiliary dataset of outliers, an approach we call Outlier Exposure (OE). This enables anomaly detectors to generalize and detect unseen anomalies. In extensive experiments on natural language processing and small- and large-scale vision tasks, we find that Outlier Exposure significantly improves detection performance. We also observe that cutting-edge generative models trained on CIFAR-10 may assign higher likelihoods to SVHN images than to CIFAR-10 images; we use OE to mitigate this issue. We also analyze the flexibility and robustness of Outlier Exposure, and identify characteristics of the auxiliary dataset that improve performance.
We advocate the use of implicit fields for learning generative models of shapes and introduce an implicit field decoder for shape generation, aimed at improving the visual quality of the generated shapes. An implicit field assigns a value to each point in 3D space, so that a shape can be extracted as an iso-surface. Our implicit field decoder is trained to perform this assignment by means of a binary classifier. Specifically, it takes a point coordinate, along with a feature vector encoding a shape, and outputs a value which indicates whether the point is outside the shape or not. By replacing conventional decoders by our decoder for representation learning and generative modeling of shapes, we demonstrate superior results for tasks such as shape autoencoding, generation, interpolation, and single-view 3D reconstruction, particularly in terms of visual quality.
We introduce an effective model to overcome the problem of mode collapse when training Generative Adversarial Networks (GAN). Firstly, we propose a new generator objective that finds it better to tackle mode collapse. And, we apply an independent Autoencoders (AE) to constrain the generator and consider its reconstructed samples as "real" samples to slow down the convergence of discriminator that enables to reduce the gradient vanishing problem and stabilize the model. Secondly, from mappings between latent and data spaces provided by AE, we further regularize AE by the relative distance between the latent and data samples to explicitly prevent the generator falling into mode collapse setting. This idea comes when we find a new way to visualize the mode collapse on MNIST dataset. To the best of our knowledge, our method is the first to propose and apply successfully the relative distance of latent and data samples for stabilizing GAN. Thirdly, our proposed model, namely Generative Adversarial Autoencoder Networks (GAAN), is stable and has suffered from neither gradient vanishing nor mode collapse issues, as empirically demonstrated on synthetic, MNIST, MNIST-1K, CelebA and CIFAR-10 datasets. Experimental results show that our method can approximate well multi-modal distribution and achieve better results than state-of-the-art methods on these benchmark datasets. Our model implementation is published here: //github.com/tntrung/gaan