Many calculi exist for modelling various features of object-oriented languages. Many of them are based on $\lambda$-calculus and focus either on statically typed class-based languages or dynamic prototype-based languages. We formalize untyped calculus of decorated objects, informally presented by Bugayenko, which is defined in terms of objects and relies on decoration as a primary mechanism of object extension. It is not based on $\lambda$-calculus, yet with only four basic syntactic constructions is just as complete. We prove the calculus is confluent (i.e. possesses Church-Rosser property), and introduce an abstract machine for call-by-name evaluation. Finally, we provide a sound translation to $\lambda$-calculus with records.
Drawing a direct analogy with the well-studied vibration or elastic modes, we introduce an object's fracture modes, which constitute its preferred or most natural ways of breaking. We formulate a sparsified eigenvalue problem, which we solve iteratively to obtain the n lowest-energy modes. These can be precomputed for a given shape to obtain a prefracture pattern that can substitute the state of the art for realtime applications at no runtime cost but significantly greater realism. Furthermore, any realtime impact can be projected onto our modes to obtain impact-dependent fracture patterns without the need for any online crack propagation simulation. We not only introduce this theoretically novel concept, but also show its fundamental and practical superiority in a diverse set of examples and contexts.
Sound event localization and detection (SELD) consists of two subtasks, which are sound event detection and direction-of-arrival estimation. While sound event detection mainly relies on time-frequency patterns to distinguish different sound classes, direction-of-arrival estimation uses amplitude and/or phase differences between microphones to estimate source directions. As a result, it is often difficult to jointly optimize these two subtasks. We propose a novel feature called Spatial cue-Augmented Log-SpectrogrAm (SALSA) with exact time-frequency mapping between the signal power and the source directional cues, which is crucial for resolving overlapping sound sources. The SALSA feature consists of multichannel log-spectrograms stacked along with the normalized principal eigenvector of the spatial covariance matrix at each corresponding time-frequency bin. Depending on the microphone array format, the principal eigenvector can be normalized differently to extract amplitude and/or phase differences between the microphones. As a result, SALSA features are applicable for different microphone array formats such as first-order ambisonics (FOA) and multichannel microphone array (MIC). Experimental results on the TAU-NIGENS Spatial Sound Events 2021 dataset with directional interferences showed that SALSA features outperformed other state-of-the-art features. Specifically, the use of SALSA features in the FOA format increased the F1 score and localization recall by 6% each, compared to the multichannel log-mel spectrograms with intensity vectors. For the MIC format, using SALSA features increased F1 score and localization recall by 16% and 7%, respectively, compared to using multichannel log-mel spectrograms with generalized cross-correlation spectra.
Although partially autonomous driving (AD) systems are already available in production vehicles, drivers are still required to maintain a sufficient level of situational awareness (SA) during driving. Previous studies have shown that providing information about the AD's capability using user interfaces can improve the driver's SA. However, displaying too much information increases the driver's workload and can distract or overwhelm the driver. Therefore, to design an efficient user interface (UI), it is necessary to understand its effect under different circumstances. In this paper, we focus on a UI based on augmented reality (AR), which can highlight potential hazards on the road. To understand the effect of highlighting on drivers' SA for objects with different types and locations under various traffic densities, we conducted an in-person experiment with 20 participants on a driving simulator. Our study results show that the effects of highlighting on drivers' SA varied by traffic densities, object locations and object types. We believe our study can provide guidance in selecting which object to highlight for the AR-based driver-assistance interface to optimize SA for drivers driving and monitoring partially autonomous vehicles.
We define the information threshold as the point of maximum curvature in the prior vs. posterior Bayesian curve, both of which are described as a function of the true positive and negative rates of the classification system in question. The nature of the threshold is such that for sufficiently adequate binary classification systems, retrieving excess information beyond the threshold does not significantly alter the reliability of our classification assessment. We hereby introduce the "marital status thought experiment" to illustrate this idea and report a previously undefined mathematical relationship between the Bayesian prior and posterior, which may have significant philosophical and epistemological implications in decision theory. Where the prior probability is a scalar between 0 and 1 given by $\phi$ and the posterior is a scalar between 0 and 1 given by $\rho$, then at the information threshold, $\phi_e$: $\phi_e + \rho_e = 1$ Otherwise stated, given some degree of prior belief, we may assert its persuasiveness when sufficient quality evidence yields a posterior so that their combined sum equals 1. Retrieving further evidence beyond this point does not significantly improve the posterior probability, and may serve as a benchmark for confidence in decision-making.
Causal discovery and causal reasoning are classically treated as separate and consecutive tasks: one first infers the causal graph, and then uses it to estimate causal effects of interventions. However, such a two-stage approach is uneconomical, especially in terms of actively collected interventional data, since the causal query of interest may not require a fully-specified causal model. From a Bayesian perspective, it is also unnatural, since a causal query (e.g., the causal graph or some causal effect) can be viewed as a latent quantity subject to posterior inference -- other unobserved quantities that are not of direct interest (e.g., the full causal model) ought to be marginalized out in this process and contribute to our epistemic uncertainty. In this work, we propose Active Bayesian Causal Inference (ABCI), a fully-Bayesian active learning framework for integrated causal discovery and reasoning, which jointly infers a posterior over causal models and queries of interest. In our approach to ABCI, we focus on the class of causally-sufficient, nonlinear additive noise models, which we model using Gaussian processes. We sequentially design experiments that are maximally informative about our target causal query, collect the corresponding interventional data, and update our beliefs to choose the next experiment. Through simulations, we demonstrate that our approach is more data-efficient than several baselines that only focus on learning the full causal graph. This allows us to accurately learn downstream causal queries from fewer samples while providing well-calibrated uncertainty estimates for the quantities of interest.
Collision avoidance for multirobot systems is a well-studied problem. Recently, control barrier functions (CBFs) have been proposed for synthesizing controllers that guarantee collision avoidance and goal stabilization for multiple robots. However, it has been noted that reactive control synthesis methods (such as CBFs) are prone to \textit{deadlock}, an equilibrium of system dynamics that causes the robots to stall before reaching their goals. In this paper, we analyze the closed-loop dynamics of robots using CBFs, to characterize controller parameters, initial conditions, and goal locations that invariably lead the system to deadlock. Using tools from duality theory, we derive geometric properties of robot configurations of an $N$ robot system once it is in deadlock and we justify them using the mechanics interpretation of KKT conditions. Our key deductions are that 1) system deadlock is characterized by a force-equilibrium on robots and 2) deadlock occurs to ensure safety when safety is on the brink of being violated. These deductions allow us to interpret deadlock as a subset of the state space, and we show that this set is non-empty and located on the boundary of the safe set. By exploiting these properties, we analyze the number of admissible robot configurations in deadlock and develop a provably-correct decentralized algorithm for deadlock resolution to safely deliver the robots to their goals. This algorithm is validated in simulations as well as experimentally on Khepera-IV robots.
End-to-end object detection is rapidly progressed after the emergence of DETR. DETRs use a set of sparse queries that replace the dense candidate boxes in most traditional detectors. In comparison, the sparse queries cannot guarantee a high recall as dense priors. However, making queries dense is not trivial in current frameworks. It not only suffers from heavy computational cost but also difficult optimization. As both sparse and dense queries are imperfect, then \emph{what are expected queries in end-to-end object detection}? This paper shows that the expected queries should be Dense Distinct Queries (DDQ). Concretely, we introduce dense priors back to the framework to generate dense queries. A duplicate query removal pre-process is applied to these queries so that they are distinguishable from each other. The dense distinct queries are then iteratively processed to obtain final sparse outputs. We show that DDQ is stronger, more robust, and converges faster. It obtains 44.5 AP on the MS COCO detection dataset with only 12 epochs. DDQ is also robust as it outperforms previous methods on both object detection and instance segmentation tasks on various datasets. DDQ blends advantages from traditional dense priors and recent end-to-end detectors. We hope it can serve as a new baseline and inspires researchers to revisit the complementarity between traditional methods and end-to-end detectors. The source code is publicly available at \url{//github.com/jshilong/DDQ}.
Causality can be described in terms of a structural causal model (SCM) that carries information on the variables of interest and their mechanistic relations. For most processes of interest the underlying SCM will only be partially observable, thus causal inference tries to leverage any exposed information. Graph neural networks (GNN) as universal approximators on structured input pose a viable candidate for causal learning, suggesting a tighter integration with SCM. To this effect we present a theoretical analysis from first principles that establishes a novel connection between GNN and SCM while providing an extended view on general neural-causal models. We then establish a new model class for GNN-based causal inference that is necessary and sufficient for causal effect identification. Our empirical illustration on simulations and standard benchmarks validate our theoretical proofs.
This paper focuses on the expected difference in borrower's repayment when there is a change in the lender's credit decisions. Classical estimators overlook the confounding effects and hence the estimation error can be magnificent. As such, we propose another approach to construct the estimators such that the error can be greatly reduced. The proposed estimators are shown to be unbiased, consistent, and robust through a combination of theoretical analysis and numerical testing. Moreover, we compare the power of estimating the causal quantities between the classical estimators and the proposed estimators. The comparison is tested across a wide range of models, including linear regression models, tree-based models, and neural network-based models, under different simulated datasets that exhibit different levels of causality, different degrees of nonlinearity, and different distributional properties. Most importantly, we apply our approaches to a large observational dataset provided by a global technology firm that operates in both the e-commerce and the lending business. We find that the relative reduction of estimation error is strikingly substantial if the causal effects are accounted for correctly.
Causal inference is a critical research topic across many domains, such as statistics, computer science, education, public policy and economics, for decades. Nowadays, estimating causal effect from observational data has become an appealing research direction owing to the large amount of available data and low budget requirement, compared with randomized controlled trials. Embraced with the rapidly developed machine learning area, various causal effect estimation methods for observational data have sprung up. In this survey, we provide a comprehensive review of causal inference methods under the potential outcome framework, one of the well known causal inference framework. The methods are divided into two categories depending on whether they require all three assumptions of the potential outcome framework or not. For each category, both the traditional statistical methods and the recent machine learning enhanced methods are discussed and compared. The plausible applications of these methods are also presented, including the applications in advertising, recommendation, medicine and so on. Moreover, the commonly used benchmark datasets as well as the open-source codes are also summarized, which facilitate researchers and practitioners to explore, evaluate and apply the causal inference methods.