Balanced and swap-robust minimal trades, introduced in [1], are important for studying the balance and stability of server access request protocols under data popularity changes. Constructions of such trades have so far relied on paired sets obtained through iterative combining of smaller sets that have provable stability guarantees, coupled with exhaustive computer search. Currently, there exists a nonnegligible gap between the resulting total dynamic balance discrepancy and the known theoretical lower bound. We present both new upper and lower bounds on the total service requests discrepancy under limited popularity changes. Our constructive near-optimal approach uses a new class of paired graphs whose vertices are two balanced sets with edges (arcs) that capture the balance and potential balance changes induced by limited-magnitude popularity changes (swaps).
Inverse problems are in many cases solved with optimization techniques. When the underlying model is linear, first-order gradient methods are usually sufficient. With nonlinear models, due to nonconvexity, one must often resort to second-order methods that are computationally more expensive. In this work we aim to approximate a nonlinear model with a linear one and correct the resulting approximation error. We develop a sequential method that iteratively solves a linear inverse problem and updates the approximation error by evaluating it at the new solution. This treatment convexifies the problem and allows us to benefit from established convex optimization methods. We separately consider cases where the approximation is fixed over iterations and where the approximation is adaptive. In the fixed case we show theoretically under what assumptions the sequence converges. In the adaptive case, particularly considering the special case of approximation by first-order Taylor expansion, we show that with certain assumptions the sequence converges to a critical point of the original nonconvex functional. Furthermore, we show that with quadratic objective functions the sequence corresponds to the Gauss-Newton method. Finally, we showcase numerical results superior to the conventional model correction method. We also show, that a fixed approximation can provide competitive results with considerable computational speed-up.
Continual few-shot relation extraction (RE) aims to continuously train a model for new relations with few labeled training data, of which the major challenges are the catastrophic forgetting of old relations and the overfitting caused by data sparsity. In this paper, we propose a new model, namely SCKD, to accomplish the continual few-shot RE task. Specifically, we design serial knowledge distillation to preserve the prior knowledge from previous models and conduct contrastive learning with pseudo samples to keep the representations of samples in different relations sufficiently distinguishable. Our experiments on two benchmark datasets validate the effectiveness of SCKD for continual few-shot RE and its superiority in knowledge transfer and memory utilization over state-of-the-art models.
The Multi-Object Navigation (MultiON) task requires a robot to localize an instance (each) of multiple object classes. It is a fundamental task for an assistive robot in a home or a factory. Existing methods for MultiON have viewed this as a direct extension of Object Navigation (ON), the task of localising an instance of one object class, and are pre-sequenced, i.e., the sequence in which the object classes are to be explored is provided in advance. This is a strong limitation in practical applications characterized by dynamic changes. This paper describes a deep reinforcement learning framework for sequence-agnostic MultiON based on an actor-critic architecture and a suitable reward specification. Our framework leverages past experiences and seeks to reward progress toward individual as well as multiple target object classes. We use photo-realistic scenes from the Gibson benchmark dataset in the AI Habitat 3D simulation environment to experimentally show that our method performs better than a pre-sequenced approach and a state of the art ON method extended to MultiON.
Complex event processing (CEP) is a powerful and increasingly more important tool to analyse data streams for Internet of Things (IoT) applications. These data streams often contain private information that requires proper protection. However, privacy protection in CEP systems is still in its infancy, and most existing privacy-preserving mechanisms (PPMs) are adopted from those designed for data streams. Such approaches undermine the quality of the entire data stream and limit the performance of IoT applications. In this paper, we attempt to break the limitation and establish a new foundation for PPMs of CEP by proposing a novel pattern-level differential privacy (DP) guarantee. We introduce two PPMs that guarantee pattern-level DP. They operate only on data that correlate with private patterns rather than on the entire data stream, leading to higher data quality. One of the PPMs provides adaptive privacy protection and brings more granularity and generalization. We evaluate the performance of the proposed PPMs with two experiments on a real-world dataset and on a synthetic dataset. The results of the experiments indicate that our proposed privacy guarantee and its PPMs can deliver better data quality under equally strong privacy guarantees, compared to multiple well-known PPMs designed for data streams.
Deep learning based voice synthesis technology generates artificial human-like speeches, which has been used in deepfakes or identity theft attacks. Existing defense mechanisms inject subtle adversarial perturbations into the raw speech audios to mislead the voice synthesis models. However, optimizing the adversarial perturbation not only consumes substantial computation time, but it also requires the availability of entire speech. Therefore, they are not suitable for protecting live speech streams, such as voice messages or online meetings. In this paper, we propose VSMask, a real-time protection mechanism against voice synthesis attacks. Different from offline protection schemes, VSMask leverages a predictive neural network to forecast the most effective perturbation for the upcoming streaming speech. VSMask introduces a universal perturbation tailored for arbitrary speech input to shield a real-time speech in its entirety. To minimize the audio distortion within the protected speech, we implement a weight-based perturbation constraint to reduce the perceptibility of the added perturbation. We comprehensively evaluate VSMask protection performance under different scenarios. The experimental results indicate that VSMask can effectively defend against 3 popular voice synthesis models. None of the synthetic voice could deceive the speaker verification models or human ears with VSMask protection. In a physical world experiment, we demonstrate that VSMask successfully safeguards the real-time speech by injecting the perturbation over the air.
Logistic regression training over encrypted data has been an attractive idea to security concerns for years. In this paper, we propose a faster gradient variant called $\texttt{quadratic gradient}$ for privacy-preserving logistic regression training. The core of $\texttt{quadratic gradient}$ can be seen as an extension of the simplified fixed Hessian. We enhance Nesterov's accelerated gradient (NAG) and Adaptive Gradient Algorithm (Adagrad) respectively with $\texttt{quadratic gradient}$ and evaluate the enhanced algorithms on several datasets. %gradient $ascent$ methods with this gradient variant on the gene dataset provided by the 2017 iDASH competition and other datasets. Experiments show that the enhanced methods have a state-of-the-art performance in convergence speed compared to the raw first-order gradient methods. We then adopt the enhanced NAG method to implement homomorphic logistic regression training, obtaining a comparable result by only $3$ iterations. There is a promising chance that $\texttt{quadratic gradient}$ could be used to enhance other first-order gradient methods for general numerical optimization problems.
Classic algorithms and machine learning systems like neural networks are both abundant in everyday life. While classic computer science algorithms are suitable for precise execution of exactly defined tasks such as finding the shortest path in a large graph, neural networks allow learning from data to predict the most likely answer in more complex tasks such as image classification, which cannot be reduced to an exact algorithm. To get the best of both worlds, this thesis explores combining both concepts leading to more robust, better performing, more interpretable, more computationally efficient, and more data efficient architectures. The thesis formalizes the idea of algorithmic supervision, which allows a neural network to learn from or in conjunction with an algorithm. When integrating an algorithm into a neural architecture, it is important that the algorithm is differentiable such that the architecture can be trained end-to-end and gradients can be propagated back through the algorithm in a meaningful way. To make algorithms differentiable, this thesis proposes a general method for continuously relaxing algorithms by perturbing variables and approximating the expectation value in closed form, i.e., without sampling. In addition, this thesis proposes differentiable algorithms, such as differentiable sorting networks, differentiable renderers, and differentiable logic gate networks. Finally, this thesis presents alternative training strategies for learning with algorithms.
Graph Convolutional Networks (GCNs) have been widely applied in various fields due to their significant power on processing graph-structured data. Typical GCN and its variants work under a homophily assumption (i.e., nodes with same class are prone to connect to each other), while ignoring the heterophily which exists in many real-world networks (i.e., nodes with different classes tend to form edges). Existing methods deal with heterophily by mainly aggregating higher-order neighborhoods or combing the immediate representations, which leads to noise and irrelevant information in the result. But these methods did not change the propagation mechanism which works under homophily assumption (that is a fundamental part of GCNs). This makes it difficult to distinguish the representation of nodes from different classes. To address this problem, in this paper we design a novel propagation mechanism, which can automatically change the propagation and aggregation process according to homophily or heterophily between node pairs. To adaptively learn the propagation process, we introduce two measurements of homophily degree between node pairs, which is learned based on topological and attribute information, respectively. Then we incorporate the learnable homophily degree into the graph convolution framework, which is trained in an end-to-end schema, enabling it to go beyond the assumption of homophily. More importantly, we theoretically prove that our model can constrain the similarity of representations between nodes according to their homophily degree. Experiments on seven real-world datasets demonstrate that this new approach outperforms the state-of-the-art methods under heterophily or low homophily, and gains competitive performance under homophily.
While existing work in robust deep learning has focused on small pixel-level $\ell_p$ norm-based perturbations, this may not account for perturbations encountered in several real world settings. In many such cases although test data might not be available, broad specifications about the types of perturbations (such as an unknown degree of rotation) may be known. We consider a setup where robustness is expected over an unseen test domain that is not i.i.d. but deviates from the training domain. While this deviation may not be exactly known, its broad characterization is specified a priori, in terms of attributes. We propose an adversarial training approach which learns to generate new samples so as to maximize exposure of the classifier to the attributes-space, without having access to the data from the test domain. Our adversarial training solves a min-max optimization problem, with the inner maximization generating adversarial perturbations, and the outer minimization finding model parameters by optimizing the loss on adversarial perturbations generated from the inner maximization. We demonstrate the applicability of our approach on three types of naturally occurring perturbations -- object-related shifts, geometric transformations, and common image corruptions. Our approach enables deep neural networks to be robust against a wide range of naturally occurring perturbations. We demonstrate the usefulness of the proposed approach by showing the robustness gains of deep neural networks trained using our adversarial training on MNIST, CIFAR-10, and a new variant of the CLEVR dataset.
Graphs, which describe pairwise relations between objects, are essential representations of many real-world data such as social networks. In recent years, graph neural networks, which extend the neural network models to graph data, have attracted increasing attention. Graph neural networks have been applied to advance many different graph related tasks such as reasoning dynamics of the physical system, graph classification, and node classification. Most of the existing graph neural network models have been designed for static graphs, while many real-world graphs are inherently dynamic. For example, social networks are naturally evolving as new users joining and new relations being created. Current graph neural network models cannot utilize the dynamic information in dynamic graphs. However, the dynamic information has been proven to enhance the performance of many graph analytical tasks such as community detection and link prediction. Hence, it is necessary to design dedicated graph neural networks for dynamic graphs. In this paper, we propose DGNN, a new {\bf D}ynamic {\bf G}raph {\bf N}eural {\bf N}etwork model, which can model the dynamic information as the graph evolving. In particular, the proposed framework can keep updating node information by capturing the sequential information of edges, the time intervals between edges and information propagation coherently. Experimental results on various dynamic graphs demonstrate the effectiveness of the proposed framework.