We propose a novel finite element-based physics-informed operator learning framework that allows for predicting spatiotemporal dynamics governed by partial differential equations (PDEs). The proposed framework employs a loss function inspired by the finite element method (FEM) with the implicit Euler time integration scheme. A transient thermal conduction problem is considered to benchmark the performance. The proposed operator learning framework takes a temperature field at the current time step as input and predicts a temperature field at the next time step. The Galerkin discretized weak formulation of the heat equation is employed to incorporate physics into the loss function, which is coined finite operator learning (FOL). Upon training, the networks successfully predict the temperature evolution over time for any initial temperature field at high accuracy compared to the FEM solution. The framework is also confirmed to be applicable to a heterogeneous thermal conductivity and arbitrary geometry. The advantages of FOL can be summarized as follows: First, the training is performed in an unsupervised manner, avoiding the need for a large data set prepared from costly simulations or experiments. Instead, random temperature patterns generated by the Gaussian random process and the Fourier series, combined with constant temperature fields, are used as training data to cover possible temperature cases. Second, shape functions and backward difference approximation are exploited for the domain discretization, resulting in a purely algebraic equation. This enhances training efficiency, as one avoids time-consuming automatic differentiation when optimizing weights and biases while accepting possible discretization errors. Finally, thanks to the interpolation power of FEM, any arbitrary geometry can be handled with FOL, which is crucial to addressing various engineering application scenarios.
Lattice gauge fixing is required to compute gauge-variant quantities, for example those used in RI-MOM renormalization schemes or as objects of comparison for model calculations. Recently, gauge-variant quantities have also been found to be more amenable to signal-to-noise optimization using contour deformations. These applications motivate systematic parameterization and exploration of gauge-fixing schemes. This work introduces a differentiable parameterization of gauge fixing which is broad enough to cover Landau gauge, Coulomb gauge, and maximal tree gauges. The adjoint state method allows gradient-based optimization to select gauge-fixing schemes that minimize an arbitrary target loss function.
We present a data-driven framework for the multiscale modeling of anisotropic finite strain elasticity based on physics-augmented neural networks (PANNs). Our approach allows the efficient simulation of materials with complex underlying microstructures which reveal an overall anisotropic and nonlinear behavior on the macroscale. By using a set of invariants as input, an energy-type output and by adding several correction terms to the overall energy density functional, the model fulfills multiple physical principles by construction. The invariants are formed from the right Cauchy-Green deformation tensor and fully symmetric 2nd, 4th or 6th order structure tensors which enables to describe a wide range of symmetry groups. Besides the network parameters, the structure tensors are simultaneously calibrated during training so that the underlying anisotropy of the material is reproduced most accurately. In addition, sparsity of the model with respect to the number of invariants is enforced by adding a trainable gate layer and using lp regularization. Our approach works for data containing tuples of deformation, stress and material tangent, but also for data consisting only of tuples of deformation and stress, as is the case in real experiments. The developed approach is exemplarily applied to several representative examples, where necessary data for the training of the PANN surrogate model are collected via computational homogenization. We show that the proposed model achieves excellent interpolation and extrapolation behaviors. In addition, the approach is benchmarked against an NN model based on the components of the right Cauchy-Green deformation tensor.
In this paper, a two-sided variable-coefficient space-fractional diffusion equation with fractional Neumann boundary condition is considered. To conquer the weak singularity caused by nonlocal space-fractional differential operators, a fractional block-centered finite difference (BCFD) method on general nonuniform grids is proposed. However, this discretization still results in an unstructured dense coefficient matrix with huge memory requirement and computational complexity. To address this issue, a fast version fractional BCFD algorithm by employing the well-known sum-of-exponentials (SOE) approximation technique is also proposed. Based upon the Krylov subspace iterative methods, fast matrix-vector multiplications of the resulting coefficient matrices with any vector are developed, in which they can be implemented in only $\mathcal{O}(MN_{exp})$ operations per iteration without losing any accuracy compared to the direct solvers, where $N_{exp}\ll M$ is the number of exponentials in the SOE approximation. Moreover, the coefficient matrices do not necessarily need to be generated explicitly, while they can be stored in $\mathcal{O}(MN_{exp})$ memory by only storing some coefficient vectors. Numerical experiments are provided to demonstrate the efficiency and accuracy of the method.
We develop a new computational framework to solve sequential Bayesian optimal experimental design (SBOED) problems constrained by large-scale partial differential equations with infinite-dimensional random parameters. We propose an adaptive terminal formulation of the optimality criteria for SBOED to achieve adaptive global optimality. We also establish an equivalent optimization formulation to achieve computational simplicity enabled by Laplace and low-rank approximations of the posterior. To accelerate the solution of the SBOED problem, we develop a derivative-informed latent attention neural operator (LANO), a new neural network surrogate model that leverages (1) derivative-informed dimension reduction for latent encoding, (2) an attention mechanism to capture the dynamics in the latent space, (3) an efficient training in the latent space augmented by projected Jacobian, which collectively leads to an efficient, accurate, and scalable surrogate in computing not only the parameter-to-observable (PtO) maps but also their Jacobians. We further develop the formulation for the computation of the MAP points, the eigenpairs, and the sampling from posterior by LANO in the reduced spaces and use these computations to solve the SBOED problem. We demonstrate the superior accuracy of LANO compared to two other neural architectures and the high accuracy of LANO compared to the finite element method (FEM) for the computation of MAP points and eigenvalues in solving the SBOED problem with application to the experimental design of the time to take MRI images in monitoring tumor growth. We show that the proposed computational framework achieves an amortized $180\times$ speedup.
We propose a new step-wise approach to proving observational equivalence, and in particular reasoning about fragility of observational equivalence. Our approach is based on what we call local reasoning. The local reasoning exploits the graphical concept of neighbourhood, and it extracts a new, formal, concept of robustness as a key sufficient condition of observational equivalence. Moreover, our proof methodology is capable of proving a generalised notion of observational equivalence. The generalised notion can be quantified over syntactically restricted contexts instead of all contexts, and also quantitatively constrained in terms of the number of reduction steps. The operational machinery we use is given by a hypergraph-rewriting abstract machine inspired by Girard's Geometry of Interaction. The behaviour of language features, including function abstraction and application, is provided by hypergraph-rewriting rules. We demonstrate our proof methodology using the call-by-value lambda-calculus equipped with (higher-order) state.
We explore a linear inhomogeneous elasticity equation with random Lam\'e parameters. The latter are parameterized by a countably infinite number of terms in separated expansions. The main aim of this work is to estimate expected values (considered as an infinite dimensional integral on the parametric space corresponding to the random coefficients) of linear functionals acting on the solution of the elasticity equation. To achieve this, the expansions of the random parameters are truncated, a high-order quasi-Monte Carlo (QMC) is combined with a sparse grid approach to approximate the high dimensional integral, and a Galerkin finite element method (FEM) is introduced to approximate the solution of the elasticity equation over the physical domain. The error estimates from (1) truncating the infinite expansion, (2) the Galerkin FEM, and (3) the QMC sparse grid quadrature rule are all studied. For this purpose, we show certain required regularity properties of the continuous solution with respect to both the parametric and physical variables. To achieve our theoretical regularity and convergence results, some reasonable assumptions on the expansions of the random coefficients are imposed. Finally, some numerical results are delivered.
A C++ library for sensitivity analysis of optimisation problems involving ordinary differential equations (ODEs) enabled by automatic differentiation (AD) and SIMD (Single Instruction, Multiple data) vectorization is presented. The discrete adjoint sensitivity analysis method is implemented for adaptive explicit Runge-Kutta (ERK) methods. Automatic adjoint differentiation (AAD) is employed for efficient evaluations of products of vectors and the Jacobian matrix of the right hand side of the ODE system. This approach avoids the low-level drawbacks of the black box approach of employing AAD on the entire ODE solver and opens the possibility to leverage parallelization. SIMD vectorization is employed to compute the vector-Jacobian products concurrently. We study the performance of other methods and implementations of sensitivity analysis and we find that our algorithm presents a small advantage compared to equivalent existing software.
Randomized matrix algorithms have become workhorse tools in scientific computing and machine learning. To use these algorithms safely in applications, they should be coupled with posterior error estimates to assess the quality of the output. To meet this need, this paper proposes two diagnostics: a leave-one-out error estimator for randomized low-rank approximations and a jackknife resampling method to estimate the variance of the output of a randomized matrix computation. Both of these diagnostics are rapid to compute for randomized low-rank approximation algorithms such as the randomized SVD and randomized Nystr\"om approximation, and they provide useful information that can be used to assess the quality of the computed output and guide algorithmic parameter choices.
We study combinatorial properties of plateaued functions. All quadratic functions, bent functions and most known APN functions are plateaued, so many cryptographic primitives rely on plateaued functions as building blocks. The main focus of our study is the interplay of the Walsh transform and linearity of a plateaued function, its differential properties, and their value distributions, i.e., the sizes of image and preimage sets. In particular, we study the special case of ``almost balanced'' plateaued functions, which only have two nonzero preimage set sizes, generalizing for instance all monomial functions. We achieve several direct connections and (non)existence conditions for these functions, showing for instance that plateaued $d$-to-$1$ functions (and thus plateaued monomials) only exist for a very select choice of $d$, and we derive for all these functions their linearity as well as bounds on their differential uniformity. We also specifically study the Walsh transform of plateaued APN functions and their relation to their value distribution.
We derive information-theoretic generalization bounds for supervised learning algorithms based on the information contained in predictions rather than in the output of the training algorithm. These bounds improve over the existing information-theoretic bounds, are applicable to a wider range of algorithms, and solve two key challenges: (a) they give meaningful results for deterministic algorithms and (b) they are significantly easier to estimate. We show experimentally that the proposed bounds closely follow the generalization gap in practical scenarios for deep learning.