Modern Artificial Intelligence (AI) technologies, led by Machine Learning (ML), have gained unprecedented momentum over the past decade. Following this wave of ``AI summer'', the network research community has also embraced AI/ML algorithms to address many problems related to network operations and management. However, compared to their counterparts in other domains, most ML-based solutions have yet to receive large-scale deployment due to insufficient maturity for production settings. This article concentrates on the practical issues of developing and operating ML-based solutions in real networks. Specifically, we enumerate the key factors hindering the integration of AI/ML in real networks and review existing solutions to uncover the missing considerations. Further, we highlight a promising direction, i.e., Machine Learning Operations (MLOps), that can close the gap. We believe this paper spotlights the system-related considerations on implementing \& maintaining ML-based solutions and invigorate their full adoption in future networks.
As AI models rapidly evolve, they are frequently released to open repositories, such as HuggingFace. It is essential to perform quality assurance validation on these models before integrating them into the production development lifecycle. In addition to evaluating efficiency in terms of balanced accuracy and computing costs, adversarial attacks are potential threats to the robustness and explainability of AI models. Meanwhile, XAI applies algorithms that approximate inputs to outputs post-hoc to identify the contributing features. Adversarial perturbations may also degrade the utility of XAI explanations that require further investigation. In this paper, we present an integrated process designed for downstream evaluation tasks, including validating AI model accuracy, evaluating robustness with benchmark perturbations, comparing explanation utility, and assessing overhead. We demonstrate an evaluation scenario involving six computer vision models, which include CNN-based, Transformer-based, and hybrid architectures, three types of perturbations, and five XAI methods, resulting in ninety unique combinations. The process reveals the explanation utility among the XAI methods in terms of the identified key areas responding to the adversarial perturbation. The process produces aggregated results that illustrate multiple attributes of each AI model.
The success of Large Language Models (LLMs) has led to a parallel rise in the development of Large Multimodal Models (LMMs), such as Gemini-pro, which have begun to transform a variety of applications. These sophisticated multimodal models are designed to interpret and analyze complex data, integrating both textual and visual information on a scale previously unattainable, opening new avenues for a range of applications. This paper investigates the applicability and effectiveness of prompt-engineered Gemini-pro LMMs versus fine-tuned Vision Transformer (ViT) models in addressing critical security challenges. We focus on two distinct tasks: a visually evident task of detecting simple triggers, such as small squares in images, indicative of potential backdoors, and a non-visually evident task of malware classification through visual representations. Our results highlight a significant divergence in performance, with Gemini-pro falling short in accuracy and reliability when compared to fine-tuned ViT models. The ViT models, on the other hand, demonstrate exceptional accuracy, achieving near-perfect performance on both tasks. This study not only showcases the strengths and limitations of prompt-engineered LMMs in cybersecurity applications but also emphasizes the unmatched efficacy of fine-tuned ViT models for precise and dependable tasks.
Task offloading, crucial for balancing computational loads across devices in networks such as the Internet of Things, poses significant optimization challenges, including minimizing latency and energy usage under strict communication and storage constraints. While traditional optimization falls short in scalability; and heuristic approaches lack in achieving optimal outcomes, Reinforcement Learning (RL) offers a promising avenue by enabling the learning of optimal offloading strategies through iterative interactions. However, the efficacy of RL hinges on access to rich datasets and custom-tailored, realistic training environments. To address this, we introduce PeersimGym, an open-source, customizable simulation environment tailored for developing and optimizing task offloading strategies within computational networks. PeersimGym supports a wide range of network topologies and computational constraints and integrates a \textit{PettingZoo}-based interface for RL agent deployment in both solo and multi-agent setups. Furthermore, we demonstrate the utility of the environment through experiments with Deep Reinforcement Learning agents, showcasing the potential of RL-based approaches to significantly enhance offloading strategies in distributed computing settings. PeersimGym thus bridges the gap between theoretical RL models and their practical applications, paving the way for advancements in efficient task offloading methodologies.
As jurisdictions around the world take their first steps toward regulating the most powerful AI systems, such as the EU AI Act and the US Executive Order 14110, there is a growing need for effective enforcement mechanisms that can verify compliance and respond to violations. We argue that compute providers should have legal obligations and ethical responsibilities associated with AI development and deployment, both to provide secure infrastructure and to serve as intermediaries for AI regulation. Compute providers can play an essential role in a regulatory ecosystem via four key capacities: as securers, safeguarding AI systems and critical infrastructure; as record keepers, enhancing visibility for policymakers; as verifiers of customer activities, ensuring oversight; and as enforcers, taking actions against rule violations. We analyze the technical feasibility of performing these functions in a targeted and privacy-conscious manner and present a range of technical instruments. In particular, we describe how non-confidential information, to which compute providers largely already have access, can provide two key governance-relevant properties of a computational workload: its type-e.g., large-scale training or inference-and the amount of compute it has consumed. Using AI Executive Order 14110 as a case study, we outline how the US is beginning to implement record keeping requirements for compute providers. We also explore how verification and enforcement roles could be added to establish a comprehensive AI compute oversight scheme. We argue that internationalization will be key to effective implementation, and highlight the critical challenge of balancing confidentiality and privacy with risk mitigation as the role of compute providers in AI regulation expands.
Multimodal Large Language Models (MLLMs) have showcased impressive skills in tasks related to visual understanding and reasoning. Yet, their widespread application faces obstacles due to the high computational demands during both the training and inference phases, restricting their use to a limited audience within the research and user communities. In this paper, we investigate the design aspects of Multimodal Small Language Models (MSLMs) and propose an efficient multimodal assistant named Mipha, which is designed to create synergy among various aspects: visual representation, language models, and optimization strategies. We show that without increasing the volume of training data, our Mipha-3B outperforms the state-of-the-art large MLLMs, especially LLaVA-1.5-13B, on multiple benchmarks. Through detailed discussion, we provide insights and guidelines for developing strong MSLMs that rival the capabilities of MLLMs. Our code is available at //github.com/zhuyiche/llava-phi.
This paper describes CBGT-Net, a neural network model inspired by the cortico-basal ganglia-thalamic (CBGT) circuits found in mammalian brains. Unlike traditional neural network models, which either generate an output for each provided input, or an output after a fixed sequence of inputs, the CBGT-Net learns to produce an output after a sufficient criteria for evidence is achieved from a stream of observed data. For each observation, the CBGT-Net generates a vector that explicitly represents the amount of evidence the observation provides for each potential decision, accumulates the evidence over time, and generates a decision when the accumulated evidence exceeds a pre-defined threshold. We evaluate the proposed model on two image classification tasks, where models need to predict image categories based on a stream of small patches extracted from the image. We show that the CBGT-Net provides improved accuracy and robustness compared to models trained to classify from a single patch, and models leveraging an LSTM layer to classify from a fixed sequence length of patches.
Instruction-finetuned Large Language Models inherit clear political leanings that have been shown to influence downstream task performance. We expand this line of research beyond the two-party system in the US and audit Llama Chat in the context of EU politics in various settings to analyze the model's political knowledge and its ability to reason in context. We adapt, i.e., further fine-tune, Llama Chat on speeches of individual euro-parties from debates in the European Parliament to reevaluate its political leaning based on the EUandI questionnaire. Llama Chat shows considerable knowledge of national parties' positions and is capable of reasoning in context. The adapted, party-specific, models are substantially re-aligned towards respective positions which we see as a starting point for using chat-based LLMs as data-driven conversational engines to assist research in political science.
Graph Neural Networks (GNNs) have gained momentum in graph representation learning and boosted the state of the art in a variety of areas, such as data mining (\emph{e.g.,} social network analysis and recommender systems), computer vision (\emph{e.g.,} object detection and point cloud learning), and natural language processing (\emph{e.g.,} relation extraction and sequence learning), to name a few. With the emergence of Transformers in natural language processing and computer vision, graph Transformers embed a graph structure into the Transformer architecture to overcome the limitations of local neighborhood aggregation while avoiding strict structural inductive biases. In this paper, we present a comprehensive review of GNNs and graph Transformers in computer vision from a task-oriented perspective. Specifically, we divide their applications in computer vision into five categories according to the modality of input data, \emph{i.e.,} 2D natural images, videos, 3D data, vision + language, and medical images. In each category, we further divide the applications according to a set of vision tasks. Such a task-oriented taxonomy allows us to examine how each task is tackled by different GNN-based approaches and how well these approaches perform. Based on the necessary preliminaries, we provide the definitions and challenges of the tasks, in-depth coverage of the representative approaches, as well as discussions regarding insights, limitations, and future directions.
Knowledge Graph Embedding (KGE) aims to learn representations for entities and relations. Most KGE models have gained great success, especially on extrapolation scenarios. Specifically, given an unseen triple (h, r, t), a trained model can still correctly predict t from (h, r, ?), or h from (?, r, t), such extrapolation ability is impressive. However, most existing KGE works focus on the design of delicate triple modeling function, which mainly tells us how to measure the plausibility of observed triples, but offers limited explanation of why the methods can extrapolate to unseen data, and what are the important factors to help KGE extrapolate. Therefore in this work, we attempt to study the KGE extrapolation of two problems: 1. How does KGE extrapolate to unseen data? 2. How to design the KGE model with better extrapolation ability? For the problem 1, we first discuss the impact factors for extrapolation and from relation, entity and triple level respectively, propose three Semantic Evidences (SEs), which can be observed from train set and provide important semantic information for extrapolation. Then we verify the effectiveness of SEs through extensive experiments on several typical KGE methods. For the problem 2, to make better use of the three levels of SE, we propose a novel GNN-based KGE model, called Semantic Evidence aware Graph Neural Network (SE-GNN). In SE-GNN, each level of SE is modeled explicitly by the corresponding neighbor pattern, and merged sufficiently by the multi-layer aggregation, which contributes to obtaining more extrapolative knowledge representation. Finally, through extensive experiments on FB15k-237 and WN18RR datasets, we show that SE-GNN achieves state-of-the-art performance on Knowledge Graph Completion task and performs a better extrapolation ability.
Deep Learning algorithms have achieved the state-of-the-art performance for Image Classification and have been used even in security-critical applications, such as biometric recognition systems and self-driving cars. However, recent works have shown those algorithms, which can even surpass the human capabilities, are vulnerable to adversarial examples. In Computer Vision, adversarial examples are images containing subtle perturbations generated by malicious optimization algorithms in order to fool classifiers. As an attempt to mitigate these vulnerabilities, numerous countermeasures have been constantly proposed in literature. Nevertheless, devising an efficient defense mechanism has proven to be a difficult task, since many approaches have already shown to be ineffective to adaptive attackers. Thus, this self-containing paper aims to provide all readerships with a review of the latest research progress on Adversarial Machine Learning in Image Classification, however with a defender's perspective. Here, novel taxonomies for categorizing adversarial attacks and defenses are introduced and discussions about the existence of adversarial examples are provided. Further, in contrast to exisiting surveys, it is also given relevant guidance that should be taken into consideration by researchers when devising and evaluating defenses. Finally, based on the reviewed literature, it is discussed some promising paths for future research.