Connected and automated vehicles have shown great potential in improving traffic mobility and reducing emissions, especially at unsignalized intersections. Previous research has shown that vehicle passing order is the key influencing factor in improving intersection traffic mobility. In this paper, we propose a graph-based cooperation method to formalize the conflict-free scheduling problem at an unsignalized intersection. Based on graphical analysis, a vehicle's trajectory conflict relationship is modeled as a conflict directed graph and a coexisting undirected graph. Then, two graph-based methods are proposed to find the vehicle passing order. The first is an improved depth-first spanning tree algorithm, which aims to find the local optimal passing order vehicle by vehicle. The other novel method is a minimum clique cover algorithm, which identifies the global optimal solution. Finally, a distributed control framework and communication topology are presented to realize the conflict-free cooperation of vehicles. Extensive numerical simulations are conducted for various numbers of vehicles and traffic volumes, and the simulation results prove the effectiveness of the proposed algorithms.
By defining two important terms called basic perturbation vectors and obtaining their linear bounds, we obtain the linear componentwise perturbation bounds for unitary factors and upper triangular factors of the generalized Schur decomposition. The perturbation bounds for the diagonal elements of the upper triangular factors and the generalized invariant subspace are also derived. From the former, we present an upper bound and a condition number of the generalized eigenvalue. Furthermore, with numerical iterative method, the nonlinear componentwise perturbation bounds of the generalized Schur decomposition are also provided. Numerical examples are given to test the obtained bounds. Among them, we compare our upper bound and condition number of the generalized eigenvalue with their counterparts given in the literature. Numerical results show that they are very close to each other but our results don't contain the information on the left and right generalized eigenvectors.
Automated vehicles require the ability to cooperate with humans for smooth integration into today's traffic. While the concept of cooperation is well known, developing a robust and efficient cooperative trajectory planning method is still a challenge. One aspect of this challenge is the uncertainty surrounding the state of the environment due to limited sensor accuracy. This uncertainty can be represented by a Partially Observable Markov Decision Process. Our work addresses this problem by extending an existing cooperative trajectory planning approach based on Monte Carlo Tree Search for continuous action spaces. It does so by explicitly modeling uncertainties in the form of a root belief state, from which start states for trees are sampled. After the trees have been constructed with Monte Carlo Tree Search, their results are aggregated into return distributions using kernel regression. We apply two risk metrics for the final selection, namely a Lower Confidence Bound and a Conditional Value at Risk. It can be demonstrated that the integration of risk metrics in the final selection policy consistently outperforms a baseline in uncertain environments, generating considerably safer trajectories.
The development of autonomous vehicles provides an opportunity to have a complete set of camera sensors capturing the environment around the car. Thus, it is important for object detection and tracking to address new challenges, such as achieving consistent results across views of cameras. To address these challenges, this work presents a new Global Association Graph Model with Link Prediction approach to predict existing tracklets location and link detections with tracklets via cross-attention motion modeling and appearance re-identification. This approach aims at solving issues caused by inconsistent 3D object detection. Moreover, our model exploits to improve the detection accuracy of a standard 3D object detector in the nuScenes detection challenge. The experimental results on the nuScenes dataset demonstrate the benefits of the proposed method to produce SOTA performance on the existing vision-based tracking dataset.
Ground Penetrating Radar (GPR) is a very useful non-destructive evaluation (NDE) device for locating and mapping underground assets prior to digging and trenching efforts in construction. This paper presents a novel robotic system to automate the GPR data collection process, localize the underground utilities, interpret and reconstruct the underground objects for better visualization allowing regular non-professional users to understand the survey results. This system is composed of three modules: 1) an Omni-directional robotic data collection platform, that carries an RGB-D camera with an Inertial Measurement Unit (IMU) and a GPR antenna to perform automatic GPR data collection, and tag each GPR measurement with visual positioning information at every sampling step; 2) a learning-based migration module to interpret the raw GPR B-scan image into a 2D cross-section model of objects; 3) a 3D reconstruction module, i.e., GPRNet, to generate underground utility model represented as fine 3D point cloud. Comparative studies are performed on synthetic data and field GPR raw data with various incompleteness and noise. Experimental results demonstrate that our proposed method achieves a $30.0\%$ higher GPR imaging accuracy in mean Intersection Over Union (IoU) than the conventional back projection (BP) migration approach and $6.9\%$-$7.2\%$ less loss in Chamfer Distance (CD) than baseline methods regarding point cloud model reconstruction. The GPR-based robotic inspection provides an effective tool for civil engineers to detect and survey underground utilities before construction.
Approximate-message passing (AMP) algorithms have become an important element of high-dimensional statistical inference, mostly due to their adaptability and concentration properties, the state evolution (SE) equations. This is demonstrated by the growing number of new iterations proposed for increasingly complex problems, ranging from multi-layer inference to low-rank matrix estimation with elaborate priors. In this paper, we address the following questions: is there a structure underlying all AMP iterations that unifies them in a common framework? Can we use such a structure to give a modular proof of state evolution equations, adaptable to new AMP iterations without reproducing each time the full argument ? We propose an answer to both questions, showing that AMP instances can be generically indexed by an oriented graph. This enables to give a unified interpretation of these iterations, independent from the problem they solve, and a way of composing them arbitrarily. We then show that all AMP iterations indexed by such a graph admit rigorous SE equations, extending the reach of previous proofs, and proving a number of recent heuristic derivations of those equations. Our proof naturally includes non-separable functions and we show how existing refinements, such as spatial coupling or matrix-valued variables, can be combined with our framework.
This paper studies the application of reconfigurable intelligent surface (RIS) to cooperative non-orthogonal multiple access (C-NOMA) networks with simultaneous wireless information and power transfer (SWIPT). We aim for maximizing the rate of the strong user with guaranteed weak user's quality of service (QoS) by jointly optimizing power splitting factors, beamforming coefficients, and RIS reflection coefficients in two transmission phases. The formulated problem is difficult to solve due to its complex and non-convex constraints. To tackle this challenging problem, we first use alternating optimization (AO) framework to transform it into three subproblems, and then use the penalty-based arithmetic-geometric mean approximation (PBAGM) algorithm and the successive convex approximation (SCA)-based method to solve them. Numerical results verify the superiority of the proposed algorithm over the baseline schemes.
With the rapid growth of new technological paradigms such as the Internet of Things (IoT), it opens new doors for many applications in the modern era for the betterment of human life. One of the recent applications of the IoT is the Internet of Vehicles (IoV) which helps to see unprecedented growth of connected vehicles on the roads. The IoV is gaining attention due to enhancing traffic safety and providing low route information. One of the most important and major requirements of the IoV is preserving security and privacy under strict latency. Moreover, vehicles are required to be authenticated frequently and fast considering limited bandwidth, high mobility, and density of the vehicles. To address the security vulnerabilities and data integrity, an ultralight authentication scheme has been proposed in this article. Physical Unclonable Function (PUF) and XOR function are used to authenticate both server and vehicle in two message flow which makes the proposed scheme ultralight, and less computation is required. The proposed Easy-Sec can authenticate vehicles maintaining low latency and resisting known security threats. Furthermore, the proposed Easy-Sec needs low overhead so that it does not increase the burden of the IoV network. Computational ( around 4 ms) and Communication (32 bytes) overhead shows the feasibility, efficiency, and also security features are depicted using formal analysis, Burrows, Abadi, and Needham (BAN) logic, and informal analysis to show the robustness of the proposed mechanisms against security threats.
Multi-camera vehicle tracking is one of the most complicated tasks in Computer Vision as it involves distinct tasks including Vehicle Detection, Tracking, and Re-identification. Despite the challenges, multi-camera vehicle tracking has immense potential in transportation applications including speed, volume, origin-destination (O-D), and routing data generation. Several recent works have addressed the multi-camera tracking problem. However, most of the effort has gone towards improving accuracy on high-quality benchmark datasets while disregarding lower camera resolutions, compression artifacts and the overwhelming amount of computational power and time needed to carry out this task on its edge and thus making it prohibitive for large-scale and real-time deployment. Therefore, in this work we shed light on practical issues that should be addressed for the design of a multi-camera tracking system to provide actionable and timely insights. Moreover, we propose a real-time city-scale multi-camera vehicle tracking system that compares favorably to computationally intensive alternatives and handles real-world, low-resolution CCTV instead of idealized and curated video streams. To show its effectiveness, in addition to integration into the Regional Integrated Transportation Information System (RITIS), we participated in the 2021 NVIDIA AI City multi-camera tracking challenge and our method is ranked among the top five performers on the public leaderboard.
5G applications have become increasingly popular in recent years as the spread of fifth-generation (5G) network deployment has grown. For vehicular networks, mmWave band signals have been well studied and used for communication and sensing. In this work, we propose a new dynamic ray tracing algorithm that exploits spatial and temporal coherence. We evaluate the performance by comparing the results on typical vehicular communication scenarios with GEMV^2, which uses a combination of deterministic and stochastic models, and WinProp, which utilizes the deterministic model for simulations with given environment information. We also compare the performance of our algorithm on complex, urban models and observe a reduction in computation time by 36% compared to GEMV^2 and by 30% compared to WinProp, while maintaining similar prediction accuracy.
Connected and autonomous vehicles (CAVs) improve the throughput of intersections by crossing in a lane-free order as compared to the signalised crossing of human drivers. However, it is challenging to quantify such an improvement because the available frameworks to analyse the capacity (i.e., the maximum throughput) of the conventional intersections does not apply to the lane-free ones. This paper proposes a novel theoretical framework to numerically simulate and compare the capacity of lane-free and conventional intersections. The results show that the maximum number of vehicles passing through a lane-free intersection is up to seven times more than a signalised intersection managed by the state-of-the-art max-pressure and Webster algorithms. A sensitivity analysis shows that, in contrast to the signalised intersections, the capacity of the lane-free intersections improves by an increase in initial speed, the maximum permissible speed and acceleration of vehicles.