亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The numerical approximation of dynamic poroelasticity, modeling flow in deformable porous media, by a family of continuous space-time finite element methods is investigated. Equal order approximation in space without any further stabilization is used for the displacement and pore pressure variable. Optimal order $L^\infty(L^2)$ error estimates are proved and numerically confirmed.

相關內容

Randomized iterative methods, such as the Kaczmarz method and its variants, have gained growing attention due to their simplicity and efficiency in solving large-scale linear systems. Meanwhile, absolute value equations (AVE) have attracted increasing interest due to their connection with the linear complementarity problem. In this paper, we investigate the application of randomized iterative methods to generalized AVE (GAVE). Our approach differs from most existing works in that we tackle GAVE with non-square coefficient matrices. We establish more comprehensive sufficient and necessary conditions for characterizing the solvability of GAVE and propose precise error bound conditions. Furthermore, we introduce a flexible and efficient randomized iterative algorithmic framework for solving GAVE, which employs sampling matrices drawn from user-specified distributions. This framework is capable of encompassing many well-known methods, including the Picard iteration method and the randomized Kaczmarz method. Leveraging our findings on solvability and error bounds, we establish both almost sure convergence and linear convergence rates for this versatile algorithmic framework. Finally, we present numerical examples to illustrate the advantages of the new algorithms.

This research aims to estimate three parameters in a stochastic generalized logistic differential equation. We assume the intrinsic growth rate and shape parameters are constant but unknown. To estimate these two parameters, we use the maximum likelihood method and establish that the estimators for these two parameters are strongly consistent. We estimate the diffusion parameter by using the quadratic variation processes. To test our results, we evaluate two data scenarios, complete and incomplete, with fixed values assigned to the three parameters. In the incomplete data scenario, we apply an Expectation Maximization algorithm.

We discuss the asymptotic-preserving properties of a hybridizable discontinuous Galerkin method for the Westervelt model of ultrasound waves. More precisely, we show that the proposed method is robust with respect to small values of the sound diffusivity damping parameter~$\delta$ by deriving low- and high-order energy stability estimates, and \emph{a priori} error bounds that are independent of~$\delta$. Such bounds are then used to show that, when~$\delta \rightarrow 0^+$, the method remains stable and the discrete acoustic velocity potential~$\psi_h^{(\delta)}$ converges to~$\psi_h^{(0)}$, where the latter is the singular vanishing dissipation limit. Moreover, we prove optimal convergence for the approximation of the acoustic particle velocity variable~$\bv = \nabla \psi$. The established theoretical results are illustrated with some numerical experiments.

Physics-informed neural networks (PINNs) have emerged as powerful tools for solving a wide range of partial differential equations (PDEs). However, despite their user-friendly interface and broad applicability, PINNs encounter challenges in accurately resolving PDEs, especially when dealing with singular cases that may lead to unsatisfactory local minima. To address these challenges and improve solution accuracy, we propose an innovative approach called Annealed Adaptive Importance Sampling (AAIS) for computing the discretized PDE residuals of the cost functions, inspired by the Expectation Maximization algorithm used in finite mixtures to mimic target density. Our objective is to approximate discretized PDE residuals by strategically sampling additional points in regions with elevated residuals, thus enhancing the effectiveness and accuracy of PINNs. Implemented together with a straightforward resampling strategy within PINNs, our AAIS algorithm demonstrates significant improvements in efficiency across a range of tested PDEs, even with limited training datasets. Moreover, our proposed AAIS-PINN method shows promising capabilities in solving high-dimensional singular PDEs. The adaptive sampling framework introduced here can be integrated into various PINN frameworks.

The lacking of analytic solutions of diverse partial differential equations (PDEs) gives birth to a series of computational techniques for numerical solutions. Although numerous latest advances are accomplished in developing neural operators, a kind of neural-network-based PDE solver, these solvers become less accurate and explainable while learning long-term behaviors of non-linear PDE families. In this paper, we propose the Koopman neural operator (KNO), a new neural operator, to overcome these challenges. With the same objective of learning an infinite-dimensional mapping between Banach spaces that serves as the solution operator of the target PDE family, our approach differs from existing models by formulating a non-linear dynamic system of equation solution. By approximating the Koopman operator, an infinite-dimensional operator governing all possible observations of the dynamic system, to act on the flow mapping of the dynamic system, we can equivalently learn the solution of a non-linear PDE family by solving simple linear prediction problems. We validate the KNO in mesh-independent, long-term, and5zero-shot predictions on five representative PDEs (e.g., the Navier-Stokes equation and the Rayleigh-B{\'e}nard convection) and three real dynamic systems (e.g., global water vapor patterns and western boundary currents). In these experiments, the KNO exhibits notable advantages compared with previous state-of-the-art models, suggesting the potential of the KNO in supporting diverse science and engineering applications (e.g., PDE solving, turbulence modelling, and precipitation forecasting).

We propose an algorithm to construct optimal exact designs (EDs). Most of the work in the optimal regression design literature focuses on the approximate design (AD) paradigm due to its desired properties, including the optimality verification conditions derived by Kiefer (1959, 1974). ADs may have unbalanced weights, and practitioners may have difficulty implementing them with a designated run size $n$. Some EDs are constructed using rounding methods to get an integer number of runs at each support point of an AD, but this approach may not yield optimal results. To construct EDs, one may need to perform new combinatorial constructions for each $n$, and there is no unified approach to construct them. Therefore, we develop a systematic way to construct EDs for any given $n$. Our method can transform ADs into EDs while retaining high statistical efficiency in two steps. The first step involves constructing an AD by utilizing the convex nature of many design criteria. The second step employs a simulated annealing algorithm to search for the ED stochastically. Through several applications, we demonstrate the utility of our method for various design problems. Additionally, we show that the design efficiency approaches unity as the number of design points increases.

This paper presents a numerically exact cable finite element model for static nonlinear analysis of cable structures. The model derives the exact expression of the tension field using the geometrically exact beam theory coupled with the fundamental mechanical characteristics of cables. The equations for the cable element are formulated by addressing the equilibrium conditions at the element boundaries and ensuring compatibility within the element. Unlike previous studies that typically provide explicit expressions for cable models, this study develops a formulation that emphasizes numerical precision and broad applicability. It achieves this by deriving linearized equations with implicit expressions incorporating integrals. The proposed model accurately computes internal forces and deformation states, and determines the unstrained length of the cable. Additionally, it accounts for the variability in cross-sectional stiffness along the cable's length. The paper discusses solution implementations using the complete tangent matrix and element internal iterations. The effectiveness of the proposed cable element is demonstrated through numerical examples.

Stability of the BDF methods of order up to five for parabolic equations can be established by the energy technique via Nevanlinna--Odeh multipliers. The nonexistence of Nevanlinna--Odeh multipliers makes the six-step BDF method special; however, the energy technique was recently extended by the authors in [Akrivis et al., SIAM J. Numer. Anal. \textbf{59} (2021) 2449--2472] and covers all six stable BDF methods. The seven-step BDF method is unstable for parabolic equations, since it is not even zero-stable. In this work, we construct and analyze a stable linear combination of two non zero-stable schemes, the seven-step BDF method and its shifted counterpart, referred to as WSBDF7 method. The stability regions of the WSBDF$q, q\leqslant 7$, with a weight $\vartheta\geqslant1$, increase as $\vartheta$ increases, are larger than the stability regions of the classical BDF$q,$ corresponding to $\vartheta=1$. We determine novel and suitable multipliers for the WSBDF7 method and establish stability for parabolic equations by the energy technique. The proposed approach is applicable for mean curvature flow, gradient flows, fractional equations and nonlinear equations.

Mathematical models of protein-protein dynamics, such as the heterodimer model, play a crucial role in understanding many physical phenomena. This model is a system of two semilinear parabolic partial differential equations describing the evolution and mutual interaction of biological species. An example is the neurodegenerative disease progression in some significant pathologies, such as Alzheimer's and Parkinson's diseases, characterized by the accumulation and propagation of toxic prionic proteins. This article presents and analyzes a flexible high-order discretization method for the numerical approximation of the heterodimer model. We propose a space discretization based on a Discontinuous Galerkin method on polygonal/polyhedral grids, which provides flexibility in handling complex geometries. Concerning the semi-discrete formulation, we prove stability and a-priori error estimates for the first time. Next, we adopt a $\theta$-method scheme as a time integration scheme. Convergence tests are carried out to demonstrate the theoretical bounds and the ability of the method to approximate traveling wave solutions, considering also complex geometries such as brain sections reconstructed from medical images. Finally, the proposed scheme is tested in a practical test case stemming from neuroscience applications, namely the simulation of the spread of $\alpha$-synuclein in a realistic test case of Parkinson's disease in a two-dimensional sagittal brain section geometry reconstructed from medical images.

Matching on a low dimensional vector of scalar covariates consists of constructing groups of individuals in which each individual in a group is within a pre-specified distance from an individual in another group. However, matching in high dimensional spaces is more challenging because the distance can be sensitive to implementation details, caliper width, and measurement error of observations. To partially address these problems, we propose to use extensive sensitivity analyses and identify the main sources of variation and bias. We illustrate these concepts by examining the racial disparity in all-cause mortality in the US using the National Health and Nutrition Examination Survey (NHANES 2003-2006). In particular, we match African Americans to Caucasian Americans on age, gender, BMI and objectively measured physical activity (PA). PA is measured every minute using accelerometers for up to seven days and then transformed into an empirical distribution of all of the minute-level observations. The Wasserstein metric is used as the measure of distance between these participant-specific distributions.

北京阿比特科技有限公司