亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We develop a theory to measure the variance and covariance of probability distributions defined on the nodes of a graph, which takes into account the distance between nodes. Our approach generalizes the usual (co)variance to the setting of weighted graphs and retains many of its intuitive and desired properties. Interestingly, we find that a number of famous concepts in graph theory and network science can be reinterpreted in this setting as variances and covariances of particular distributions. As a particular application, we define the maximum variance problem on graphs with respect to the effective resistance distance, and characterize the solutions to this problem both numerically and theoretically. We show how the maximum variance distribution is concentrated on the boundary of the graph, and illustrate this in the case of random geometric graphs. Our theoretical results are supported by a number of experiments on a network of mathematical concepts, where we use the variance and covariance as analytical tools to study the (co-)occurrence of concepts in scientific papers with respect to the (network) relations between these concepts.

相關內容

Understanding causal relationships is one of the most important goals of modern science. So far, the causal inference literature has focused almost exclusively on outcomes coming from the Euclidean space $\mathbb{R}^p$. However, it is increasingly common that complex datasets collected through electronic sources, such as wearable devices, cannot be represented as data points from $\mathbb{R}^p$. In this paper, we present a novel framework of causal effects for outcomes from the Wasserstein space of cumulative distribution functions, which in contrast to the Euclidean space, is non-linear. We develop doubly robust estimators and associated asymptotic theory for these causal effects. As an illustration, we use our framework to quantify the causal effect of marriage on physical activity patterns using wearable device data collected through the National Health and Nutrition Examination Survey.

Given a fixed finite metric space $(V,\mu)$, the {\em minimum $0$-extension problem}, denoted as ${\tt 0\mbox{-}Ext}[\mu]$, is equivalent to the following optimization problem: minimize function of the form $\min\limits_{x\in V^n} \sum_i f_i(x_i) + \sum_{ij}c_{ij}\mu(x_i,x_j)$ where $c_{ij},c_{vi}$ are given nonnegative costs and $f_i:V\rightarrow \mathbb R$ are functions given by $f_i(x_i)=\sum_{v\in V}c_{vi}\mu(x_i,v)$. The computational complexity of ${\tt 0\mbox{-}Ext}[\mu]$ has been recently established by Karzanov and by Hirai: if metric $\mu$ is {\em orientable modular} then ${\tt 0\mbox{-}Ext}[\mu]$ can be solved in polynomial time, otherwise ${\tt 0\mbox{-}Ext}[\mu]$ is NP-hard. To prove the tractability part, Hirai developed a theory of discrete convex functions on orientable modular graphs generalizing several known classes of functions in discrete convex analysis, such as $L^\natural$-convex functions. We consider a more general version of the problem in which unary functions $f_i(x_i)$ can additionally have terms of the form $c_{uv;i}\mu(x_i,\{u,v\})$ for $\{u,v\}\in F$, where set $F\subseteq\binom{V}{2}$ is fixed. We extend the complexity classification above by providing an explicit condition on $(\mu,F)$ for the problem to be tractable. In order to prove the tractability part, we generalize Hirai's theory and define a larger class of discrete convex functions. It covers, in particular, another well-known class of functions, namely submodular functions on an integer lattice. Finally, we improve the complexity of Hirai's algorithm for solving ${\tt 0\mbox{-}Ext}[\mu]$ on orientable modular graphs.

Popular network models such as the mixed membership and standard stochastic block model are known to exhibit distinct geometric structure when embedded into $\mathbb{R}^{d}$ using spectral methods. The resulting point cloud concentrates around a simplex in the first model, whereas it separates into clusters in the second. By adopting the formalism of generalised random dot-product graphs, we demonstrate that both of these models, and different mixing regimes in the case of mixed membership, may be distinguished by the persistent homology of the underlying point distribution in the case of adjacency spectral embedding. Moreover, despite non-identifiability issues, we show that the persistent homology of the support of the distribution and its super-level sets can be consistently estimated. As an application of our consistency results, we provide a topological hypothesis test for distinguishing the standard and mixed membership stochastic block models.

Selecting powerful predictors for an outcome is a cornerstone task for machine learning. However, some types of questions can only be answered by identifying the predictors that causally affect the outcome. A recent approach to this causal inference problem leverages the invariance property of a causal mechanism across differing experimental environments (Peters et al., 2016; Heinze-Deml et al., 2018). This method, invariant causal prediction (ICP), has a substantial computational defect -- the runtime scales exponentially with the number of possible causal variables. In this work, we show that the approach taken in ICP may be reformulated as a series of nonparametric tests that scales linearly in the number of predictors. Each of these tests relies on the minimization of a novel loss function -- the Wasserstein variance -- that is derived from tools in optimal transport theory and is used to quantify distributional variability across environments. We prove under mild assumptions that our method is able to recover the set of identifiable direct causes, and we demonstrate in our experiments that it is competitive with other benchmark causal discovery algorithms.

This paper develops a general causal inference method for treatment effects models with noisily measured confounders. The key feature is that a large set of noisy measurements are linked with the underlying latent confounders through an unknown, possibly nonlinear factor structure. The main building block is a local principal subspace approximation procedure that combines $K$-nearest neighbors matching and principal component analysis. Estimators of many causal parameters, including average treatment effects and counterfactual distributions, are constructed based on doubly-robust score functions. Large-sample properties of these estimators are established, which only require relatively mild conditions on the principal subspace approximation. The results are illustrated with an empirical application studying the effect of political connections on stock returns of financial firms, and a Monte Carlo experiment. The main technical and methodological results regarding the general local principal subspace approximation method may be of independent interest.

Researchers have been facing a difficult problem that data generation mechanisms could be influenced by internal or external factors leading to the training and test data with quite different distributions, consequently traditional classification or regression from the training set is unable to achieve satisfying results on test data. In this paper, we address this nontrivial domain generalization problem by finding a central subspace in which domain-based covariance is minimized while the functional relationship is simultaneously maximally preserved. We propose a novel variance measurement for multiple domains so as to minimize the difference between conditional distributions across domains with solid theoretical demonstration and supports, meanwhile, the algorithm preserves the functional relationship via maximizing the variance of conditional expectations given output. Furthermore, we also provide a fast implementation that requires much less computation and smaller memory for large-scale matrix operations, suitable for not only domain generalization but also other kernel-based eigenvalue decompositions. To show the practicality of the proposed method, we compare our methods against some well-known dimension reduction and domain generalization techniques on both synthetic data and real-world applications. We show that for small-scale datasets, we are able to achieve better quantitative results indicating better generalization performance over unseen test datasets. For large-scale problems, the proposed fast implementation maintains the quantitative performance but at a substantially lower computational cost.

This paper focuses on the expected difference in borrower's repayment when there is a change in the lender's credit decisions. Classical estimators overlook the confounding effects and hence the estimation error can be magnificent. As such, we propose another approach to construct the estimators such that the error can be greatly reduced. The proposed estimators are shown to be unbiased, consistent, and robust through a combination of theoretical analysis and numerical testing. Moreover, we compare the power of estimating the causal quantities between the classical estimators and the proposed estimators. The comparison is tested across a wide range of models, including linear regression models, tree-based models, and neural network-based models, under different simulated datasets that exhibit different levels of causality, different degrees of nonlinearity, and different distributional properties. Most importantly, we apply our approaches to a large observational dataset provided by a global technology firm that operates in both the e-commerce and the lending business. We find that the relative reduction of estimation error is strikingly substantial if the causal effects are accounted for correctly.

Graph Neural Networks (GNN) come in many flavors, but should always be either invariant (permutation of the nodes of the input graph does not affect the output) or equivariant (permutation of the input permutes the output). In this paper, we consider a specific class of invariant and equivariant networks, for which we prove new universality theorems. More precisely, we consider networks with a single hidden layer, obtained by summing channels formed by applying an equivariant linear operator, a pointwise non-linearity and either an invariant or equivariant linear operator. Recently, Maron et al. (2019) showed that by allowing higher-order tensorization inside the network, universal invariant GNNs can be obtained. As a first contribution, we propose an alternative proof of this result, which relies on the Stone-Weierstrass theorem for algebra of real-valued functions. Our main contribution is then an extension of this result to the equivariant case, which appears in many practical applications but has been less studied from a theoretical point of view. The proof relies on a new generalized Stone-Weierstrass theorem for algebra of equivariant functions, which is of independent interest. Finally, unlike many previous settings that consider a fixed number of nodes, our results show that a GNN defined by a single set of parameters can approximate uniformly well a function defined on graphs of varying size.

Topic models have been widely explored as probabilistic generative models of documents. Traditional inference methods have sought closed-form derivations for updating the models, however as the expressiveness of these models grows, so does the difficulty of performing fast and accurate inference over their parameters. This paper presents alternative neural approaches to topic modelling by providing parameterisable distributions over topics which permit training by backpropagation in the framework of neural variational inference. In addition, with the help of a stick-breaking construction, we propose a recurrent network that is able to discover a notionally unbounded number of topics, analogous to Bayesian non-parametric topic models. Experimental results on the MXM Song Lyrics, 20NewsGroups and Reuters News datasets demonstrate the effectiveness and efficiency of these neural topic models.

In this paper we introduce a covariance framework for the analysis of EEG and MEG data that takes into account observed temporal stationarity on small time scales and trial-to-trial variations. We formulate a model for the covariance matrix, which is a Kronecker product of three components that correspond to space, time and epochs/trials, and consider maximum likelihood estimation of the unknown parameter values. An iterative algorithm that finds approximations of the maximum likelihood estimates is proposed. We perform a simulation study to assess the performance of the estimator and investigate the influence of different assumptions about the covariance factors on the estimated covariance matrix and on its components. Apart from that, we illustrate our method on real EEG and MEG data sets. The proposed covariance model is applicable in a variety of cases where spontaneous EEG or MEG acts as source of noise and realistic noise covariance estimates are needed for accurate dipole localization, such as in evoked activity studies, or where the properties of spontaneous EEG or MEG are themselves the topic of interest, such as in combined EEG/fMRI experiments in which the correlation between EEG and fMRI signals is investigated.

北京阿比特科技有限公司