亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Gate-defined quantum dots are a promising candidate system to realize scalable, coupled qubit systems and serve as a fundamental building block for quantum computers. However, present-day quantum dot devices suffer from imperfections that must be accounted for, which hinders the characterization, tuning, and operation process. Moreover, with an increasing number of quantum dot qubits, the relevant parameter space grows sufficiently to make heuristic control infeasible. Thus, it is imperative that reliable and scalable autonomous tuning approaches are developed. In this report, we outline current challenges in automating quantum dot device tuning and operation with a particular focus on datasets, benchmarking, and standardization. We also present ideas put forward by the quantum dot community on how to overcome them.

相關內容

Quantum computing is a cutting-edge field of information technology that harnesses the principles of quantum mechanics to perform computations. It has major implications for the cyber security industry. Existing cyber protection applications are working well, but there are still challenges and vulnerabilities in computer networks. Sometimes data and privacy are also compromised. These complications lead to research questions asking what kind of cyber protection applications of quantum computing are there and what potential methods or techniques can be used for cyber protection? These questions will reveal how much power quantum computing has and to what extent it can outperform the conventional computing systems. This scoping review was conducted by considering 815 papers. It showed the possibilities that can be achievedif quantum technologies are implemented in cyber environments. This scoping review discusses various domains such as algorithms and applications, bioinformatics, cloud and edge computing, the organization of complex systems, application areas focused on security and threats, and the broader quantum computing ecosystem. In each of these areas, there is significant scope for quantum computing to be implemented and to revolutionize the working environment. Numerous quantum computing applications for cyber protection and a number of techniques to protect our data and privacy were identified. The results are not limited to network security but also include data security. This paper also discusses societal aspects, e.g., the applications of quantum computing in the social sciences. This scoping review discusses how to enhance the efficiency and security of quantum computing in various cyber security domains. Additionally, it encourages the reader to think about what kind of techniques and methods can be deployed to secure the cyber world.

Lazy evaluation is a powerful tool that enables better compositionality and potentially better performance in functional programming, but it is challenging to analyze its computation cost. Existing works either require manually annotating sharing, or rely on separation logic to reason about heaps of mutable cells. In this paper, we propose a bidirectional demand semantics that allows for extrinsic reasoning about the computation cost of lazy programs without relying on special program logics. To show the effectiveness of our approach, we apply the demand semantics to a variety of case studies including insertion sort, selection sort, Okasaki's banker's queue, and the implicit queue. We formally prove that the banker's queue and the implicit queue are both amortized and persistent using the Rocq Prover (formerly known as Coq). We also propose the reverse physicist's method, a novel variant of the classical physicist's method, which enables mechanized, modular and compositional reasoning about amortization and persistence with the demand semantics.

Symbolic Computation algorithms and their implementation in computer algebra systems often contain choices which do not affect the correctness of the output but can significantly impact the resources required: such choices can benefit from having them made separately for each problem via a machine learning model. This study reports lessons on such use of machine learning in symbolic computation, in particular on the importance of analysing datasets prior to machine learning and on the different machine learning paradigms that may be utilised. We present results for a particular case study, the selection of variable ordering for cylindrical algebraic decomposition, but expect that the lessons learned are applicable to other decisions in symbolic computation. We utilise an existing dataset of examples derived from applications which was found to be imbalanced with respect to the variable ordering decision. We introduce an augmentation technique for polynomial systems problems that allows us to balance and further augment the dataset, improving the machine learning results by 28\% and 38\% on average, respectively. We then demonstrate how the existing machine learning methodology used for the problem $-$ classification $-$ might be recast into the regression paradigm. While this does not have a radical change on the performance, it does widen the scope in which the methodology can be applied to make choices.

Advances in artificial intelligence and human-computer interaction will likely lead to extended reality (XR) becoming pervasive. While XR can provide users with interactive, engaging, and immersive experiences, non-player characters are often utilized in pre-scripted and conventional ways. This paper argues for using large language models (LLMs) in XR by embedding them in avatars or as narratives to facilitate inclusion through prompt engineering and fine-tuning the LLMs. We argue that this inclusion will promote diversity for XR use. Furthermore, the versatile conversational capabilities of LLMs will likely increase engagement in XR, helping XR become ubiquitous. Lastly, we speculate that combining the information provided to LLM-powered spaces by users and the biometric data obtained might lead to novel privacy invasions. While exploring potential privacy breaches, examining user privacy concerns and preferences is also essential. Therefore, despite challenges, LLM-powered XR is a promising area with several opportunities.

The problem of pure exploration in Markov decision processes has been cast as maximizing the entropy over the state distribution induced by the agent's policy, an objective that has been extensively studied. However, little attention has been dedicated to state entropy maximization under partial observability, despite the latter being ubiquitous in applications, e.g., finance and robotics, in which the agent only receives noisy observations of the true state governing the system's dynamics. How can we address state entropy maximization in those domains? In this paper, we study the simple approach of maximizing the entropy over observations in place of true latent states. First, we provide lower and upper bounds to the approximation of the true state entropy that only depends on some properties of the observation function. Then, we show how knowledge of the latter can be exploited to compute a principled regularization of the observation entropy to improve performance. With this work, we provide both a flexible approach to bring advances in state entropy maximization to the POMDP setting and a theoretical characterization of its intrinsic limits.

This work presents a procedure to solve the Euler equations by explicitly updating, in a conservative manner, a generic thermodynamic variable such as temperature, pressure or entropy instead of the total energy. The presented procedure is valid for any equation of state and spatial discretization. When using complex equations of state such as Span-Wagner, choosing the temperature as the generic thermodynamic variable yields great reductions in the computational costs associated to thermodynamic evaluations. Results computed with a state of the art thermodynamic model are presented, and computational times are analyzed. Particular attention is dedicated to the conservation of total energy, the propagation speed of shock waves and jump conditions. The procedure is thoroughly tested using the Span-Wagner equation of state through the CoolProp thermodynamic library and the Van der Waals equation of state, both in the ideal and non-ideal compressible fluid-dynamics regimes, by comparing it to the standard total energy update and analytical solutions where available.

Significant pattern mining is a fundamental task in mining transactional data, requiring to identify patterns significantly associated with the value of a given feature, the target. In several applications, such as biomedicine, basket market analysis, and social networks, the goal is to discover patterns whose association with the target is defined with respect to an underlying population, or process, of which the dataset represents only a collection of observations, or samples. A natural way to capture the association of a pattern with the target is to consider its statistical significance, assessing its deviation from the (null) hypothesis of independence between the pattern and the target. While several algorithms have been proposed to find statistically significant patterns, it remains a computationally demanding task, and for complex patterns such as subgroups, no efficient solution exists. We present FSR, an efficient algorithm to identify statistically significant patterns with rigorous guarantees on the probability of false discoveries. FSR builds on a novel general framework for mining significant patterns that captures some of the most commonly considered patterns, including itemsets, sequential patterns, and subgroups. FSR uses a small number of resampled datasets, obtained by assigning i.i.d. labels to each transaction, to rigorously bound the supremum deviation of a quality statistic measuring the significance of patterns. FSR builds on novel tight bounds on the supremum deviation that require to mine a small number of resampled datasets, while providing a high effectiveness in discovering significant patterns. As a test case, we consider significant subgroup mining, and our evaluation on several real datasets shows that FSR is effective in discovering significant subgroups, while requiring a small number of resampled datasets.

We study interacting particle systems driven by noise, modeling phenomena such as opinion dynamics. We are interested in systems that exhibit phase transitions i.e. non-uniqueness of stationary states for the corresponding McKean-Vlasov PDE, in the mean field limit. We develop an efficient numerical scheme for identifying all steady states (both stable and unstable) of the mean field McKean-Vlasov PDE, based on a spectral Galerkin approximation combined with a deflated Newton's method to handle the multiplicity of solutions. Having found all possible equilibra, we formulate an optimal control strategy for steering the dynamics towards a chosen unstable steady state. The control is computed using iterated open-loop solvers in a receding horizon fashion. We demonstrate the effectiveness of the proposed steady state computation and stabilization methodology on several examples, including the noisy Hegselmann-Krause model for opinion dynamics and the Haken-Kelso-Bunz model from biophysics. The numerical experiments validate the ability of the approach to capture the rich self-organization landscape of these systems and to stabilize unstable configurations of interest. The proposed computational framework opens up new possibilities for understanding and controlling the collective behavior of noise-driven interacting particle systems, with potential applications in various fields such as social dynamics, biological synchronization, and collective behavior in physical and social systems.

Modular, distributed and multi-core architectures are currently considered a promising approach for scalability of quantum computing systems. The integration of multiple Quantum Processing Units necessitates classical and quantum-coherent communication, introducing challenges related to noise and quantum decoherence in quantum state transfers between cores. Optimizing communication becomes imperative, and the compilation and mapping of quantum circuits onto physical qubits must minimize state transfers while adhering to architectural constraints. The compilation process, inherently an NP-hard problem, demands extensive search times even with a small number of qubits to be solved to optimality. To address this challenge efficiently, we advocate for the utilization of heuristic mappers that can rapidly generate solutions. In this work, we propose a novel approach employing Deep Reinforcement Learning (DRL) methods to learn these heuristics for a specific multi-core architecture. Our DRL agent incorporates a Transformer encoder and Graph Neural Networks. It encodes quantum circuits using self-attention mechanisms and produce outputs through an attention-based pointer mechanism that directly signifies the probability of matching logical qubits with physical cores. This enables the selection of optimal cores for logical qubits efficiently. Experimental evaluations show that the proposed method can outperform baseline approaches in terms of reducing inter-core communications and minimizing online time-to-solution. This research contributes to the advancement of scalable quantum computing systems by introducing a novel learning-based heuristic approach for efficient quantum circuit compilation and mapping.

The existence of representative datasets is a prerequisite of many successful artificial intelligence and machine learning models. However, the subsequent application of these models often involves scenarios that are inadequately represented in the data used for training. The reasons for this are manifold and range from time and cost constraints to ethical considerations. As a consequence, the reliable use of these models, especially in safety-critical applications, is a huge challenge. Leveraging additional, already existing sources of knowledge is key to overcome the limitations of purely data-driven approaches, and eventually to increase the generalization capability of these models. Furthermore, predictions that conform with knowledge are crucial for making trustworthy and safe decisions even in underrepresented scenarios. This work provides an overview of existing techniques and methods in the literature that combine data-based models with existing knowledge. The identified approaches are structured according to the categories integration, extraction and conformity. Special attention is given to applications in the field of autonomous driving.

北京阿比特科技有限公司