Current dark pattern research tells designers what not to do, but how do they know what to do? In contrast to prior approaches that focus on patterns to avoid and their underlying principles, we present a framework grounded in positive expected behavior against which deviations can be judged. To articulate this expected behavior, we use concepts -- abstract units of functionality that compose applications. We define a design as dark when its concepts violate users' expectations, and benefit the application provider at the user's expense. Though user expectations can differ, users tend to develop common expectations as they encounter the same concepts across multiple applications, which we can record in a concept catalog as standard concepts. We evaluate our framework and concept catalog through three studies, illustrating their ability to describe existing dark patterns, evaluate nuanced designs, and document common application functionality.
Penalized transformation models (PTMs) are a novel form of location-scale regression. In PTMs, the shape of the response's conditional distribution is estimated directly from the data, and structured additive predictors are placed on its location and scale. The core of the model is a monotonically increasing transformation function that relates the response distribution to a reference distribution. The transformation function is equipped with a smoothness prior that regularizes how much the estimated distribution diverges from the reference distribution. These models can be seen as a bridge between conditional transformation models and generalized additive models for location, scale and shape. Markov chain Monte Carlo inference for PTMs can be conducted with the No-U-Turn sampler and offers straightforward uncertainty quantification for the conditional distribution as well as for the covariate effects. A simulation study demonstrates the effectiveness of the approach. We apply the model to data from the Fourth Dutch Growth Study and the Framingham Heart Study. A full-featured implementation is available as a Python library.
This paper proposes a cross-modal distillation framework, PartDistill, which transfers 2D knowledge from vision-language models (VLMs) to facilitate 3D shape part segmentation. PartDistill addresses three major challenges in this task: the lack of 3D segmentation in invisible or undetected regions in the 2D projections, inconsistent 2D predictions by VLMs, and the lack of knowledge accumulation across different 3D shapes. PartDistill consists of a teacher network that uses a VLM to make 2D predictions and a student network that learns from the 2D predictions while extracting geometrical features from multiple 3D shapes to carry out 3D part segmentation. A bi-directional distillation, including forward and backward distillations, is carried out within the framework, where the former forward distills the 2D predictions to the student network, and the latter improves the quality of the 2D predictions, which subsequently enhances the final 3D segmentation. Moreover, PartDistill can exploit generative models that facilitate effortless 3D shape creation for generating knowledge sources to be distilled. Through extensive experiments, PartDistill boosts the existing methods with substantial margins on widely used ShapeNetPart and PartNetE datasets, by more than 15% and 12% higher mIoU scores, respectively. The code for this work is available at //github.com/ardianumam/PartDistill.
Crowdsourced labels play a crucial role in evaluating task-oriented dialogue systems (TDSs). Obtaining high-quality and consistent ground-truth labels from annotators presents challenges. When evaluating a TDS, annotators must fully comprehend the dialogue before providing judgments. Previous studies suggest using only a portion of the dialogue context in the annotation process. However, the impact of this limitation on label quality remains unexplored. This study investigates the influence of dialogue context on annotation quality, considering the truncated context for relevance and usefulness labeling. We further propose to use large language models (LLMs) to summarize the dialogue context to provide a rich and short description of the dialogue context and study the impact of doing so on the annotator's performance. Reducing context leads to more positive ratings. Conversely, providing the entire dialogue context yields higher-quality relevance ratings but introduces ambiguity in usefulness ratings. Using the first user utterance as context leads to consistent ratings, akin to those obtained using the entire dialogue, with significantly reduced annotation effort. Our findings show how task design, particularly the availability of dialogue context, affects the quality and consistency of crowdsourced evaluation labels.
With the rise of text-to-image (T2I) generative AI models reaching wide audiences, it is critical to evaluate model robustness against non-obvious attacks to mitigate the generation of offensive images. By focusing on ``implicitly adversarial'' prompts (those that trigger T2I models to generate unsafe images for non-obvious reasons), we isolate a set of difficult safety issues that human creativity is well-suited to uncover. To this end, we built the Adversarial Nibbler Challenge, a red-teaming methodology for crowdsourcing a diverse set of implicitly adversarial prompts. We have assembled a suite of state-of-the-art T2I models, employed a simple user interface to identify and annotate harms, and engaged diverse populations to capture long-tail safety issues that may be overlooked in standard testing. The challenge is run in consecutive rounds to enable a sustained discovery and analysis of safety pitfalls in T2I models. In this paper, we present an in-depth account of our methodology, a systematic study of novel attack strategies and discussion of safety failures revealed by challenge participants. We also release a companion visualization tool for easy exploration and derivation of insights from the dataset. The first challenge round resulted in over 10k prompt-image pairs with machine annotations for safety. A subset of 1.5k samples contains rich human annotations of harm types and attack styles. We find that 14% of images that humans consider harmful are mislabeled as ``safe'' by machines. We have identified new attack strategies that highlight the complexity of ensuring T2I model robustness. Our findings emphasize the necessity of continual auditing and adaptation as new vulnerabilities emerge. We are confident that this work will enable proactive, iterative safety assessments and promote responsible development of T2I models.
Deep learning models have become a powerful tool in knee angle estimation for lower limb prostheses, owing to their adaptability across various gait phases and locomotion modes. Current methods utilize Multi-Layer Perceptrons (MLP), Long-Short Term Memory Networks (LSTM), and Convolutional Neural Networks (CNN), predominantly analyzing motion information from the thigh. Contrary to these approaches, our study introduces a holistic perspective by integrating whole-body movements as inputs. We propose a transformer-based probabilistic framework, termed the Angle Estimation Probabilistic Model (AEPM), that offers precise angle estimations across extensive scenarios beyond walking. AEPM achieves an overall RMSE of 6.70 degrees, with an RMSE of 3.45 degrees in walking scenarios. Compared to the state of the art, AEPM has improved the prediction accuracy for walking by 11.31%. Our method can achieve seamless adaptation between different locomotion modes. Also, this model can be utilized to analyze the synergy between the knee and other joints. We reveal that the whole body movement has valuable information for knee movement, which can provide insights into designing sensors for prostheses. The code is available at //github.com/penway/Beyond-Gait-AEPM.
A new knowledge-based and machine learning hybrid modeling approach, called conditional Gaussian neural stochastic differential equation (CGNSDE), is developed to facilitate modeling complex dynamical systems and implementing analytic formulae of the associated data assimilation (DA). In contrast to the standard neural network predictive models, the CGNSDE is designed to effectively tackle both forward prediction tasks and inverse state estimation problems. The CGNSDE starts by exploiting a systematic causal inference via information theory to build a simple knowledge-based nonlinear model that nevertheless captures as much explainable physics as possible. Then, neural networks are supplemented to the knowledge-based model in a specific way, which not only characterizes the remaining features that are challenging to model with simple forms but also advances the use of analytic formulae to efficiently compute the nonlinear DA solution. These analytic formulae are used as an additional computationally affordable loss to train the neural networks that directly improve the DA accuracy. This DA loss function promotes the CGNSDE to capture the interactions between state variables and thus advances its modeling skills. With the DA loss, the CGNSDE is more capable of estimating extreme events and quantifying the associated uncertainty. Furthermore, crucial physical properties in many complex systems, such as the translate-invariant local dependence of state variables, can significantly simplify the neural network structures and facilitate the CGNSDE to be applied to high-dimensional systems. Numerical experiments based on chaotic systems with intermittency and strong non-Gaussian features indicate that the CGNSDE outperforms knowledge-based regression models, and the DA loss further enhances the modeling skills of the CGNSDE.
For multi-agent reinforcement learning systems (MARLS), the problem formulation generally involves investing massive reward engineering effort specific to a given problem. However, this effort often cannot be translated to other problems; worse, it gets wasted when system dynamics change drastically. This problem is further exacerbated in sparse reward scenarios, where a meaningful heuristic can assist in the policy convergence task. We propose GOVerned Reward Engineering Kernels (GOV-REK), which dynamically assign reward distributions to agents in MARLS during its learning stage. We also introduce governance kernels, which exploit the underlying structure in either state or joint action space for assigning meaningful agent reward distributions. During the agent learning stage, it iteratively explores different reward distribution configurations with a Hyperband-like algorithm to learn ideal agent reward models in a problem-agnostic manner. Our experiments demonstrate that our meaningful reward priors robustly jumpstart the learning process for effectively learning different MARL problems.
With the capability of modeling bidirectional contexts, denoising autoencoding based pretraining like BERT achieves better performance than pretraining approaches based on autoregressive language modeling. However, relying on corrupting the input with masks, BERT neglects dependency between the masked positions and suffers from a pretrain-finetune discrepancy. In light of these pros and cons, we propose XLNet, a generalized autoregressive pretraining method that (1) enables learning bidirectional contexts by maximizing the expected likelihood over all permutations of the factorization order and (2) overcomes the limitations of BERT thanks to its autoregressive formulation. Furthermore, XLNet integrates ideas from Transformer-XL, the state-of-the-art autoregressive model, into pretraining. Empirically, XLNet outperforms BERT on 20 tasks, often by a large margin, and achieves state-of-the-art results on 18 tasks including question answering, natural language inference, sentiment analysis, and document ranking.
This paper surveys the machine learning literature and presents machine learning as optimization models. Such models can benefit from the advancement of numerical optimization techniques which have already played a distinctive role in several machine learning settings. Particularly, mathematical optimization models are presented for commonly used machine learning approaches for regression, classification, clustering, and deep neural networks as well new emerging applications in machine teaching and empirical model learning. The strengths and the shortcomings of these models are discussed and potential research directions are highlighted.
Sentiment analysis is a widely studied NLP task where the goal is to determine opinions, emotions, and evaluations of users towards a product, an entity or a service that they are reviewing. One of the biggest challenges for sentiment analysis is that it is highly language dependent. Word embeddings, sentiment lexicons, and even annotated data are language specific. Further, optimizing models for each language is very time consuming and labor intensive especially for recurrent neural network models. From a resource perspective, it is very challenging to collect data for different languages. In this paper, we look for an answer to the following research question: can a sentiment analysis model trained on a language be reused for sentiment analysis in other languages, Russian, Spanish, Turkish, and Dutch, where the data is more limited? Our goal is to build a single model in the language with the largest dataset available for the task, and reuse it for languages that have limited resources. For this purpose, we train a sentiment analysis model using recurrent neural networks with reviews in English. We then translate reviews in other languages and reuse this model to evaluate the sentiments. Experimental results show that our robust approach of single model trained on English reviews statistically significantly outperforms the baselines in several different languages.