Paired comparison models are used for analyzing data that involves pairwise comparisons among a set of objects. When the outcomes of the pairwise comparisons have no ties, the paired comparison models can be generalized as a class of binary response models. Receiver operating characteristic (ROC) curves and their corresponding areas under the curves are commonly used as performance metrics to evaluate the discriminating ability of binary response models. Despite their individual wide range of usage and their close connection to binary response models, ROC analysis to our knowledge has never been extended to paired comparison models since the problem of using different objects as the reference in paired comparison models prevents traditional ROC approach from generating unambiguous and interpretable curves. We focus on addressing this problem by proposing two novel methods to construct ROC curves for paired comparison data which provide interpretable statistics and maintain desired asymptotic properties. The methods are then applied and analyzed on head-to-head professional sports competition data.
We introduce MOSAIC, a Python program for machine learning models. Our framework is developed with in mind accelerating machine learning studies through making implementing and testing arbitrary network architectures and data sets simpler, faster and less error-prone. MOSAIC features a full execution pipeline, from declaring the models, data and related hyperparameters within a simple configuration file, to the generation of ready-to-interpret figures and performance metrics. It also includes an advanced run management, stores the results within a database, and incorporates several run monitoring options. Through all these functionalities, the framework should provide a useful tool for researchers, engineers, and general practitioners of machine learning.
This paper outlines an end-to-end optimized lossy image compression framework using diffusion generative models. The approach relies on the transform coding paradigm, where an image is mapped into a latent space for entropy coding and, from there, mapped back to the data space for reconstruction. In contrast to VAE-based neural compression, where the (mean) decoder is a deterministic neural network, our decoder is a conditional diffusion model. Our approach thus introduces an additional ``content'' latent variable on which the reverse diffusion process is conditioned and uses this variable to store information about the image. The remaining ``texture'' latent variables characterizing the diffusion process are synthesized (stochastically or deterministically) at decoding time. We show that the model's performance can be tuned toward perceptual metrics of interest. Our extensive experiments involving five datasets and sixteen image quality assessment metrics show that our approach yields the strongest reported FID scores while also yielding competitive performance with state-of-the-art models in several SIM-based reference metrics.
We demonstrate a proof-of-concept of a large language model conducting corporate lobbying related activities. An autoregressive large language model (OpenAI's text-davinci-003) determines if proposed U.S. Congressional bills are relevant to specific public companies and provides explanations and confidence levels. For the bills the model deems as relevant, the model drafts a letter to the sponsor of the bill in an attempt to persuade the congressperson to make changes to the proposed legislation. We use hundreds of novel ground-truth labels of the relevance of a bill to a company to benchmark the performance of the model. It outperforms the baseline of predicting the most common outcome of irrelevance. We also benchmark the performance of the previous OpenAI GPT-3 model (text-davinci-002), which was the state-of-the-art model on many academic natural language tasks until text-davinci-003 was recently released. The performance of text-davinci-002 is worse than the simple baseline. Longer-term, if AI begins to influence law in a manner that is not a direct extension of human intentions, this threatens the critical role that law as information could play in aligning AI with humans. Initially, AI is being used to simply augment human lobbyists for a small portion of their daily tasks. However, firms have an incentive to use less and less human oversight over automated assessments of policy ideas and the written communication to regulatory agencies and Congressional staffers. The core question raised is where to draw the line between human-driven and AI-driven policy influence.
This paper explores connections between margin-based loss functions and consistency in binary classification and regression applications. It is shown that a large class of margin-based loss functions for binary classification/regression result in estimating scores equivalent to log-likelihood scores weighted by an even function. A simple characterization for conformable (consistent) loss functions is given, which allows for straightforward comparison of different losses, including exponential loss, logistic loss, and others. The characterization is used to construct a new Huber-type loss function for the logistic model. A simple relation between the margin and standardized logistic regression residuals is derived, demonstrating that all margin-based loss can be viewed as loss functions of squared standardized logistic regression residuals. The relation provides new, straightforward interpretations for exponential and logistic loss, and aids in understanding why exponential loss is sensitive to outliers. In particular, it is shown that minimizing empirical exponential loss is equivalent to minimizing the sum of squared standardized logistic regression residuals. The relation also provides new insight into the AdaBoost algorithm.
Learning in neural networks is often framed as a problem in which targeted error signals are directly propagated to parameters and used to produce updates that induce more optimal network behaviour. Backpropagation of error (BP) is an example of such an approach and has proven to be a highly successful application of stochastic gradient descent to deep neural networks. We propose constrained parameter inference (COPI) as a new principle for learning. The COPI approach assumes that learning can be set up in a manner where parameters infer their own values based upon observations of their local neuron activities. We find that this estimation of network parameters is possible under the constraints of decorrelated neural inputs and top-down perturbations of neural states for credit assignment. We show that the decorrelation required for COPI allows learning at extremely high learning rates, competitive with that of adaptive optimizers, as used by BP. We further demonstrate that COPI affords a new approach to feature analysis and network compression. Finally, we argue that COPI may shed new light on learning in biological networks given the evidence for decorrelation in the brain.
Visualization plays a vital role in making sense of complex network data. Recent studies have shown the potential of using extended reality (XR) for the immersive exploration of networks. The additional depth cues offered by XR help users perform better in certain tasks when compared to using traditional desktop setups. However, prior works on immersive network visualization rely on mostly static graph layouts to present the data to the user. This poses a problem since there is no optimal layout for all possible tasks. The choice of layout heavily depends on the type of network and the task at hand. We introduce a multi-layout approach that allows users to effectively explore hierarchical network data in immersive space. The resulting system leverages different layout techniques and interactions to efficiently use the available space in VR and provide an optimal view of the data depending on the task and the level of detail required to solve it. To evaluate our approach, we have conducted a user study comparing it against the state of the art for immersive network visualization. Participants performed tasks at varying spatial scopes. The results show that our approach outperforms the baseline in spatially focused scenarios as well as when the whole network needs to be considered.
Most classification models treat all misclassifications equally. However, different classes may be related, and these hierarchical relationships must be considered in some classification problems. These problems can be addressed by using hierarchical information during training. Unfortunately, this information is not available for all datasets. Many classification-based metric learning methods use class representatives in embedding space to represent different classes. The relationships among the learned class representatives can then be used to estimate class hierarchical structures. If we have a predefined class hierarchy, the learned class representatives can be assessed to determine whether the metric learning model learned semantic distances that match our prior knowledge. In this work, we train a softmax classifier and three metric learning models with several training options on benchmark and real-world datasets. In addition to the standard classification accuracy, we evaluate the hierarchical inference performance by inspecting learned class representatives and the hierarchy-informed performance, i.e., the classification performance, and the metric learning performance by considering predefined hierarchical structures. Furthermore, we investigate how the considered measures are affected by various models and training options. When our proposed ProxyDR model is trained without using predefined hierarchical structures, the hierarchical inference performance is significantly better than that of the popular NormFace model. Additionally, our model enhances some hierarchy-informed performance measures under the same training options. We also found that convolutional neural networks (CNNs) with random weights correspond to the predefined hierarchies better than random chance.
We introduce the Salesforce CausalAI Library, an open-source library for causal analysis using observational data. It supports causal discovery and causal inference for tabular and time series data, of both discrete and continuous types. This library includes algorithms that handle linear and non-linear causal relationships between variables, and uses multi-processing for speed-up. We also include a data generator capable of generating synthetic data with specified structural equation model for both the aforementioned data formats and types, that helps users control the ground-truth causal process while investigating various algorithms. Finally, we provide a user interface (UI) that allows users to perform causal analysis on data without coding. The goal of this library is to provide a fast and flexible solution for a variety of problems in the domain of causality. This technical report describes the Salesforce CausalAI API along with its capabilities, the implementations of the supported algorithms, and experiments demonstrating their performance and speed. Our library is available at \url{//github.com/salesforce/causalai}.
Data in Knowledge Graphs often represents part of the current state of the real world. Thus, to stay up-to-date the graph data needs to be updated frequently. To utilize information from Knowledge Graphs, many state-of-the-art machine learning approaches use embedding techniques. These techniques typically compute an embedding, i.e., vector representations of the nodes as input for the main machine learning algorithm. If a graph update occurs later on -- specifically when nodes are added or removed -- the training has to be done all over again. This is undesirable, because of the time it takes and also because downstream models which were trained with these embeddings have to be retrained if they change significantly. In this paper, we investigate embedding updates that do not require full retraining and evaluate them in combination with various embedding models on real dynamic Knowledge Graphs covering multiple use cases. We study approaches that place newly appearing nodes optimally according to local information, but notice that this does not work well. However, we find that if we continue the training of the old embedding, interleaved with epochs during which we only optimize for the added and removed parts, we obtain good results in terms of typical metrics used in link prediction. This performance is obtained much faster than with a complete retraining and hence makes it possible to maintain embeddings for dynamic Knowledge Graphs.
Retrieving object instances among cluttered scenes efficiently requires compact yet comprehensive regional image representations. Intuitively, object semantics can help build the index that focuses on the most relevant regions. However, due to the lack of bounding-box datasets for objects of interest among retrieval benchmarks, most recent work on regional representations has focused on either uniform or class-agnostic region selection. In this paper, we first fill the void by providing a new dataset of landmark bounding boxes, based on the Google Landmarks dataset, that includes $94k$ images with manually curated boxes from $15k$ unique landmarks. Then, we demonstrate how a trained landmark detector, using our new dataset, can be leveraged to index image regions and improve retrieval accuracy while being much more efficient than existing regional methods. In addition, we further introduce a novel regional aggregated selective match kernel (R-ASMK) to effectively combine information from detected regions into an improved holistic image representation. R-ASMK boosts image retrieval accuracy substantially at no additional memory cost, while even outperforming systems that index image regions independently. Our complete image retrieval system improves upon the previous state-of-the-art by significant margins on the Revisited Oxford and Paris datasets. Code and data will be released.