Causal inference is crucial for understanding the true impact of interventions, policies, or actions, enabling informed decision-making and providing insights into the underlying mechanisms that shape our world. In this paper, we establish a framework for the estimation and inference of average treatment effects using a two-sample empirical likelihood function. Two different approaches to incorporating propensity scores are developed. The first approach introduces propensity scores calibrated constraints in addition to the standard model-calibration constraints; the second approach uses the propensity scores to form weighted versions of the model-calibration constraints. The resulting estimators from both approaches are doubly robust. The limiting distributions of the two sample empirical likelihood ratio statistics are derived, facilitating the construction of confidence intervals and hypothesis tests for the average treatment effect. Bootstrap methods for constructing sample empirical likelihood ratio confidence intervals are also discussed for both approaches. Finite sample performances of the methods are investigated through simulation studies.
In social recommender systems, it is crucial that the recommendation models provide equitable visibility for different demographic groups, such as gender or race. Most existing research has addressed this problem by only studying individual static snapshots of networks that typically change over time. To address this gap, we study the evolution of recommendation fairness over time and its relation to dynamic network properties. We examine three real-world dynamic networks by evaluating the fairness of six recommendation algorithms and analyzing the association between fairness and network properties over time. We further study how interventions on network properties influence fairness by examining counterfactual scenarios with alternative evolution outcomes and differing network properties. Our results on empirical datasets suggest that recommendation fairness improves over time, regardless of the recommendation method. We also find that two network properties, minority ratio, and homophily ratio, exhibit stable correlations with fairness over time. Our counterfactual study further suggests that an extreme homophily ratio potentially contributes to unfair recommendations even with a balanced minority ratio. Our work provides insights into the evolution of fairness within dynamic networks in social science. We believe that our findings will help system operators and policymakers to better comprehend the implications of temporal changes and interventions targeting fairness in social networks.
Autonomous driving perception models are typically composed of multiple functional modules that interact through complex relationships to accomplish environment understanding. However, perception models are predominantly optimized as a black box through end-to-end training, lacking independent evaluation of functional modules, which poses difficulties for interpretability and optimization. Pioneering in the issue, we propose an evaluation method based on feature map analysis to gauge the convergence of model, thereby assessing functional modules' training maturity. We construct a quantitative metric named as the Feature Map Convergence Score (FMCS) and develop Feature Map Convergence Evaluation Network (FMCE-Net) to measure and predict the convergence degree of models respectively. FMCE-Net achieves remarkable predictive accuracy for FMCS across multiple image classification experiments, validating the efficacy and robustness of the introduced approach. To the best of our knowledge, this is the first independent evaluation method for functional modules, offering a new paradigm for the training assessment towards perception models.
Program similarity has become an increasingly popular area of research with various security applications such as plagiarism detection, author identification, and malware analysis. However, program similarity research faces a few unique dataset quality problems in evaluating the effectiveness of novel approaches. First, few high-quality datasets for binary program similarity exist and are widely used in this domain. Second, there are potentially many different, disparate definitions of what makes one program similar to another and in many cases there is often a large semantic gap between the labels provided by a dataset and any useful notion of behavioral or semantic similarity. In this paper, we present HELIX - a framework for generating large, synthetic program similarity datasets. We also introduce Blind HELIX, a tool built on top of HELIX for extracting HELIX components from library code automatically using program slicing. We evaluate HELIX and Blind HELIX by comparing the performance of program similarity tools on a HELIX dataset to a hand-crafted dataset built from multiple, disparate notions of program similarity. Using Blind HELIX, we show that HELIX can generate realistic and useful datasets of virtually infinite size for program similarity research with ground truth labels that embody practical notions of program similarity. Finally, we discuss the results and reason about relative tool ranking.
As the focus on security of Artificial Intelligence (AI) is becoming paramount, research on crafting and inserting optimal adversarial perturbations has become increasingly critical. In the malware domain, this adversarial sample generation relies heavily on the accuracy and placement of crafted perturbation with the goal of evading a trained classifier. This work focuses on applying explainability techniques to enhance the adversarial evasion attack on a machine-learning-based Windows PE malware detector. The explainable tool identifies the regions of PE malware files that have the most significant impact on the decision-making process of a given malware detector, and therefore, the same regions can be leveraged to inject the adversarial perturbation for maximum efficiency. Profiling all the PE malware file regions based on their impact on the malware detector's decision enables the derivation of an efficient strategy for identifying the optimal location for perturbation injection. The strategy should incorporate the region's significance in influencing the malware detector's decision and the sensitivity of the PE malware file's integrity towards modifying that region. To assess the utility of explainable AI in crafting an adversarial sample of Windows PE malware, we utilize the DeepExplainer module of SHAP for determining the contribution of each region of PE malware to its detection by a CNN-based malware detector, MalConv. Furthermore, we analyzed the significance of SHAP values at a more granular level by subdividing each section of Windows PE into small subsections. We then performed an adversarial evasion attack on the subsections based on the corresponding SHAP values of the byte sequences.
Humans perceive the world by concurrently processing and fusing high-dimensional inputs from multiple modalities such as vision and audio. Machine perception models, in stark contrast, are typically modality-specific and optimised for unimodal benchmarks, and hence late-stage fusion of final representations or predictions from each modality (`late-fusion') is still a dominant paradigm for multimodal video classification. Instead, we introduce a novel transformer based architecture that uses `fusion bottlenecks' for modality fusion at multiple layers. Compared to traditional pairwise self-attention, our model forces information between different modalities to pass through a small number of bottleneck latents, requiring the model to collate and condense the most relevant information in each modality and only share what is necessary. We find that such a strategy improves fusion performance, at the same time reducing computational cost. We conduct thorough ablation studies, and achieve state-of-the-art results on multiple audio-visual classification benchmarks including Audioset, Epic-Kitchens and VGGSound. All code and models will be released.
Causal inference is a critical research topic across many domains, such as statistics, computer science, education, public policy and economics, for decades. Nowadays, estimating causal effect from observational data has become an appealing research direction owing to the large amount of available data and low budget requirement, compared with randomized controlled trials. Embraced with the rapidly developed machine learning area, various causal effect estimation methods for observational data have sprung up. In this survey, we provide a comprehensive review of causal inference methods under the potential outcome framework, one of the well known causal inference framework. The methods are divided into two categories depending on whether they require all three assumptions of the potential outcome framework or not. For each category, both the traditional statistical methods and the recent machine learning enhanced methods are discussed and compared. The plausible applications of these methods are also presented, including the applications in advertising, recommendation, medicine and so on. Moreover, the commonly used benchmark datasets as well as the open-source codes are also summarized, which facilitate researchers and practitioners to explore, evaluate and apply the causal inference methods.
Embedding entities and relations into a continuous multi-dimensional vector space have become the dominant method for knowledge graph embedding in representation learning. However, most existing models ignore to represent hierarchical knowledge, such as the similarities and dissimilarities of entities in one domain. We proposed to learn a Domain Representations over existing knowledge graph embedding models, such that entities that have similar attributes are organized into the same domain. Such hierarchical knowledge of domains can give further evidence in link prediction. Experimental results show that domain embeddings give a significant improvement over the most recent state-of-art baseline knowledge graph embedding models.
Benefit from the quick development of deep learning techniques, salient object detection has achieved remarkable progresses recently. However, there still exists following two major challenges that hinder its application in embedded devices, low resolution output and heavy model weight. To this end, this paper presents an accurate yet compact deep network for efficient salient object detection. More specifically, given a coarse saliency prediction in the deepest layer, we first employ residual learning to learn side-output residual features for saliency refinement, which can be achieved with very limited convolutional parameters while keep accuracy. Secondly, we further propose reverse attention to guide such side-output residual learning in a top-down manner. By erasing the current predicted salient regions from side-output features, the network can eventually explore the missing object parts and details which results in high resolution and accuracy. Experiments on six benchmark datasets demonstrate that the proposed approach compares favorably against state-of-the-art methods, and with advantages in terms of simplicity, efficiency (45 FPS) and model size (81 MB).
Graph neural networks (GNNs) are a popular class of machine learning models whose major advantage is their ability to incorporate a sparse and discrete dependency structure between data points. Unfortunately, GNNs can only be used when such a graph-structure is available. In practice, however, real-world graphs are often noisy and incomplete or might not be available at all. With this work, we propose to jointly learn the graph structure and the parameters of graph convolutional networks (GCNs) by approximately solving a bilevel program that learns a discrete probability distribution on the edges of the graph. This allows one to apply GCNs not only in scenarios where the given graph is incomplete or corrupted but also in those where a graph is not available. We conduct a series of experiments that analyze the behavior of the proposed method and demonstrate that it outperforms related methods by a significant margin.
Multi-relation Question Answering is a challenging task, due to the requirement of elaborated analysis on questions and reasoning over multiple fact triples in knowledge base. In this paper, we present a novel model called Interpretable Reasoning Network that employs an interpretable, hop-by-hop reasoning process for question answering. The model dynamically decides which part of an input question should be analyzed at each hop; predicts a relation that corresponds to the current parsed results; utilizes the predicted relation to update the question representation and the state of the reasoning process; and then drives the next-hop reasoning. Experiments show that our model yields state-of-the-art results on two datasets. More interestingly, the model can offer traceable and observable intermediate predictions for reasoning analysis and failure diagnosis, thereby allowing manual manipulation in predicting the final answer.