This study explores the critical role of open government data (OGD) portals in fostering transparency and collaboration between diverse stakeholders. Recognizing the challenges of usability, communication with diverse populations, and strategic value creation, this paper develops an integrated framework for evaluating OGD portal effectiveness that accommodates user diversity (regardless of their data literacy and language), evaluates collaboration and participation, and the ability of users to explore and understand the data provided through them. The framework is validated by applying it to 33 national portals across European Union and Gulf Cooperation Council (GCC) countries, as a result of which we rank OGD portals, identify some good practices that lower-performing portals can learn from, and common shortcomings. Notably, the study unveils the competitive and innovative nature of GCC OGD portals, pinpointing specific improvement areas such as multilingual support and data understandability. The findings underscore the growing trend of exposing data quality metrics and advocate for enhanced two-way communication channels between users and portal representatives. Overall, the study contributes to accelerating the development of user-friendly, collaborative, and sustainable OGD portals while addressing gaps identified in previous research.
The Internet service provider industry is currently experiencing intense competition as companies strive to provide top-notch services to their customers. Providers are introducing cutting-edge technologies to enhance service quality, understanding that their survival depends on the level of service they offer. However, evaluating service quality is a complex task. A crucial aspect of this evaluation lies in understanding user experience, which significantly impacts the success and reputation of a service or product. Ensuring a seamless and positive user experience is essential for attracting and retaining customers. To date, much effort has been devoted to developing tools for measuring Quality of Experience (QoE), which incorporate both subjective and objective criteria. These tools, available in closed and open-source formats, are accessible to organizations and contribute to improving user experience quality. This review article delves into recent research and initiatives aimed at creating frameworks for assessing user QoE. It also explores the integration of machine learning algorithms to enhance these tools for future advancements. Additionally, the article examines current challenges and envisions future directions in the development of these measurement tools.
Current recommendation systems are significantly affected by a serious issue of temporal data shift, which is the inconsistency between the distribution of historical data and that of online data. Most existing models focus on utilizing updated data, overlooking the transferable, temporal data shift-free information that can be learned from shifting data. We propose the Temporal Invariance of Association theorem, which suggests that given a fixed search space, the relationship between the data and the data in the search space keeps invariant over time. Leveraging this principle, we designed a retrieval-based recommendation system framework that can train a data shift-free relevance network using shifting data, significantly enhancing the predictive performance of the original model in the recommendation system. However, retrieval-based recommendation models face substantial inference time costs when deployed online. To address this, we further designed a distill framework that can distill information from the relevance network into a parameterized module using shifting data. The distilled model can be deployed online alongside the original model, with only a minimal increase in inference time. Extensive experiments on multiple real datasets demonstrate that our framework significantly improves the performance of the original model by utilizing shifting data.
Blockchain technology ensures secure and trustworthy data flow between multiple participants on the chain, but interoperability of on-chain and off-chain data has always been a difficult problem that needs to be solved. To solve the problem that blockchain systems cannot access off-chain data, oracle is introduced. however, existing research mainly focuses on the consistency and integrity of data, but ignores the problem that oracle nodes may be externally attacked or provide false data for selfish motives, resulting in the unresolved problem of data accuracy. In this paper, we introduce a new decentralized testing architecture (DesTest) that aims to improve data accuracy. A blockchain oracle random secret testing mechanism is first proposed to enhance the monitoring and verification of nodes by introducing a dynamic anonymized question-verification committee. Based on this, a comprehensive evaluation incentive mechanism is designed to incentivize honest work performance by evaluating nodes based on their reputation scores. The simulation results show that we successfully reduced the discrete entropy value of the acquired data and the real value of the data by 61.4%.
The customization of services in Fifth-generation (5G) and Beyond 5G (B5G) networks relies heavily on network slicing, which creates multiple virtual networks on a shared physical infrastructure, tailored to meet specific requirements of distinct applications, using Software Defined Networking (SDN) and Network Function Virtualization (NFV). It is imperative to ensure that network services meet the performance and reliability requirements of various applications and users, thus, service assurance is one of the critical components in network slicing. One of the key functionalities of network slicing is the ability to scale Virtualized Network Functions (VNFs) in response to changing resource demand and to meet Customer Service Level agreements (SLAs). In this paper, we introduce a proactive closed-loop algorithm for end-to-end network orchestration, designed to provide service assurance in 5G and B5G networks. We focus on dynamically scaling resources to meet key performance indicators (KPIs) specific to each network slice and operate in parallel across multiple slices, making it scalable and capable of managing completely automatically real-time service assurance. Through our experiments, we demonstrate that the proposed algorithm effectively fulfills service assurance requirements for different network slice types, thereby minimizing network resource utilization and reducing the over-provisioning of spare resources.
We introduce CHARM, the first benchmark for comprehensively and in-depth evaluating the commonsense reasoning ability of large language models (LLMs) in Chinese, which covers both globally known and Chinese-specific commonsense. We evaluated 7 English and 12 Chinese-oriented LLMs on CHARM, employing 5 representative prompt strategies for improving LLMs' reasoning ability, such as Chain-of-Thought. Our findings indicate that the LLM's language orientation and the task's domain influence the effectiveness of the prompt strategy, which enriches previous research findings. We built closely-interconnected reasoning and memorization tasks, and found that some LLMs struggle with memorizing Chinese commonsense, affecting their reasoning ability, while others show differences in reasoning despite similar memorization performance. We also evaluated the LLMs' memorization-independent reasoning abilities and analyzed the typical errors. Our study precisely identified the LLMs' strengths and weaknesses, providing the clear direction for optimization. It can also serve as a reference for studies in other fields. We will release CHARM at //github.com/opendatalab/CHARM .
As a result of the proliferation of 3D digitisation in the context of cultural heritage projects, digital assets and digitisation processes - being considered as proper research objects - must prioritise adherence to FAIR principles. Existing standards and ontologies, such as CIDOC CRM, play a crucial role in this regard, but they are often over-engineered for the need of a particular application context, thus making their understanding and adoption difficult. Application profiles of a given standard - defined as sets of ontological entities drawn from one or more semantic artefacts for a particular context or application - are usually proposed as tools for promoting interoperability and reuse while being tied entirely to the particular application context they refer to. In this paper, we present an adaptation and application of an ontology development methodology, i.e. SAMOD, to guide the creation of robust, semantically sound application profiles of large standard models. Using an existing pilot study we have developed in a project dedicated to leveraging virtual technologies to preserve and valorise cultural heritage, we introduce an application profile named CHAD-AP, that we have developed following our customised version of SAMOD. We reflect on the use of SAMOD and similar ontology development methodologies for this purpose, highlighting its strengths and current limitations, future developments, and possible adoption in other similar projects.
Underwater datacenters (UDCs) hold promise as next-generation data storage due to their energy efficiency and environmental sustainability benefits. While the natural cooling properties of water save power, the isolated aquatic environment and long-range sound propagation in water create unique vulnerabilities which differ from those of on-land data centers. Our research discovers the unique vulnerabilities of fault-tolerant storage devices, resource allocation software, and distributed file systems to acoustic injection attacks in UDCs. With a realistic testbed approximating UDC server operations, we empirically characterize the capabilities of acoustic injection underwater and find that an attacker can reduce fault-tolerant RAID 5 storage system throughput by 17% up to 100%. Our closed-water analyses reveal that attackers can (i) cause unresponsiveness and automatic node removal in a distributed filesystem with only 2.4 minutes of sustained acoustic injection, (ii) induce a distributed database's latency to increase by up to 92.7% to reduce system reliability, and (iii) induce load-balance managers to redirect up to 74% of resources to a target server to cause overload or force resource colocation. Furthermore, we perform open-water experiments in a lake and find that an attacker can cause controlled throughput degradation at a maximum allowable distance of 6.35 m using a commercial speaker. We also investigate and discuss the effectiveness of standard defenses against acoustic injection attacks. Finally, we formulate a novel machine learning-based detection system that reaches 0% False Positive Rate and 98.2% True Positive Rate trained on our dataset of profiled hard disk drives under 30-second FIO benchmark execution. With this work, we aim to help manufacturers proactively protect UDCs against acoustic injection attacks and ensure the security of subsea computing infrastructures.
In pace with developments in the research field of artificial intelligence, knowledge graphs (KGs) have attracted a surge of interest from both academia and industry. As a representation of semantic relations between entities, KGs have proven to be particularly relevant for natural language processing (NLP), experiencing a rapid spread and wide adoption within recent years. Given the increasing amount of research work in this area, several KG-related approaches have been surveyed in the NLP research community. However, a comprehensive study that categorizes established topics and reviews the maturity of individual research streams remains absent to this day. Contributing to closing this gap, we systematically analyzed 507 papers from the literature on KGs in NLP. Our survey encompasses a multifaceted review of tasks, research types, and contributions. As a result, we present a structured overview of the research landscape, provide a taxonomy of tasks, summarize our findings, and highlight directions for future work.
Small data challenges have emerged in many learning problems, since the success of deep neural networks often relies on the availability of a huge amount of labeled data that is expensive to collect. To address it, many efforts have been made on training complex models with small data in an unsupervised and semi-supervised fashion. In this paper, we will review the recent progresses on these two major categories of methods. A wide spectrum of small data models will be categorized in a big picture, where we will show how they interplay with each other to motivate explorations of new ideas. We will review the criteria of learning the transformation equivariant, disentangled, self-supervised and semi-supervised representations, which underpin the foundations of recent developments. Many instantiations of unsupervised and semi-supervised generative models have been developed on the basis of these criteria, greatly expanding the territory of existing autoencoders, generative adversarial nets (GANs) and other deep networks by exploring the distribution of unlabeled data for more powerful representations. While we focus on the unsupervised and semi-supervised methods, we will also provide a broader review of other emerging topics, from unsupervised and semi-supervised domain adaptation to the fundamental roles of transformation equivariance and invariance in training a wide spectrum of deep networks. It is impossible for us to write an exclusive encyclopedia to include all related works. Instead, we aim at exploring the main ideas, principles and methods in this area to reveal where we are heading on the journey towards addressing the small data challenges in this big data era.
In order to answer natural language questions over knowledge graphs, most processing pipelines involve entity and relation linking. Traditionally, entity linking and relation linking has been performed either as dependent sequential tasks or independent parallel tasks. In this paper, we propose a framework called "EARL", which performs entity linking and relation linking as a joint single task. EARL uses a graph connection based solution to the problem. We model the linking task as an instance of the Generalised Travelling Salesman Problem (GTSP) and use GTSP approximate algorithm solutions. We later develop EARL which uses a pair-wise graph-distance based solution to the problem.The system determines the best semantic connection between all keywords of the question by referring to a knowledge graph. This is achieved by exploiting the "connection density" between entity candidates and relation candidates. The "connection density" based solution performs at par with the approximate GTSP solution.We have empirically evaluated the framework on a dataset with 5000 questions. Our system surpasses state-of-the-art scores for entity linking task by reporting an accuracy of 0.65 to 0.40 from the next best entity linker.