亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Bi-static sensing is crucial for exploring the potential of networked sensing capabilities in integrated sensing and communications (ISAC). However, it suffers from the challenging clock asynchronism issue. CSI ratio-based sensing is an effective means to address the issue. Its performance bounds, particular for Doppler sensing, have not been fully understood yet. This work endeavors to fill the research gap. Focusing on a single dynamic path in high-SNR scenarios, we derive the closed-form CRB. Then, through analyzing the mutual interference between dynamic and static paths, we simplify the CRB results by deriving close approximations, further unveiling new insights of the impact of numerous physical parameters on Doppler sensing. Moreover, utilizing the new CRB and analyses, we propose novel waveform optimization strategies for noise- and interference-limited sensing scenarios, which are also empowered by closed-form and efficient solutions. Extensive simulation results are provided to validate the preciseness of the derived CRB results and analyses, with the aid of the maximum-likelihood estimator. The results also demonstrate the substantial enhanced Doppler sensing accuracy and the sensing capabilities for low-speed target achieved by the proposed waveform design.

相關內容

Processing-in-memory (PIM) has shown extraordinary potential in accelerating neural networks. To evaluate the performance of PIM accelerators, we present an ISA-based simulation framework including a dedicated ISA targeting neural networks running on PIM architectures, a compiler, and a cycleaccurate configurable simulator. Compared with prior works, this work decouples software algorithms and hardware architectures through the proposed ISA, providing a more convenient way to evaluate the effectiveness of software/hardware optimizations. The simulator adopts an event-driven simulation approach and has better support for hardware parallelism. The framework is open-sourced at //github.com/wangxy-2000/pimsim-nn.

Fusing information from different modalities can enhance data analysis tasks, including clustering. However, existing multi-view clustering (MVC) solutions are limited to specific domains or rely on a suboptimal and computationally demanding two-stage procedure of representation and clustering. We propose an end-to-end deep learning-based MVC framework for general data (image, tabular, etc.). Our approach involves learning meaningful fused data representations with a novel permutation-based canonical correlation objective. Concurrently, we learn cluster assignments by identifying consistent pseudo-labels across multiple views. We demonstrate the effectiveness of our model using ten MVC benchmark datasets. Theoretically, we show that our model approximates the supervised linear discrimination analysis (LDA) representation. Additionally, we provide an error bound induced by false-pseudo label annotations.

Granger causality has been widely used in various application domains to capture lead-lag relationships amongst the components of complex dynamical systems, and the focus in extant literature has been on a single dynamical system. In certain applications in macroeconomics and neuroscience, one has access to data from a collection of related such systems, wherein the modeling task of interest is to extract the shared common structure that is embedded across them, as well as to identify the idiosyncrasies within individual ones. This paper introduces a Variational Autoencoder (VAE) based framework that jointly learns Granger-causal relationships amongst components in a collection of related-yet-heterogeneous dynamical systems, and handles the aforementioned task in a principled way. The performance of the proposed framework is evaluated on several synthetic data settings and benchmarked against existing approaches designed for individual system learning. The method is further illustrated on a real dataset involving time series data from a neurophysiological experiment and produces interpretable results.

We investigate the impact of non-regular path expressions on the decidability of satisfiability checking and querying in description logics extending ALC. Our primary objects of interest are ALCreg and ALCvpl, the extensions of with path expressions employing, respectively, regular and visibly-pushdown languages. The first one, ALCreg, is a notational variant of the well-known Propositional Dynamic Logic of Fischer and Ladner. The second one, ALCvpl, was introduced and investigated by Loding and Serre in 2007. The logic ALCvpl generalises many known decidable non-regular extensions of ALCreg. We provide a series of undecidability results. First, we show that decidability of the concept satisfiability problem for ALCvpl is lost upon adding the seemingly innocent Self operator. Second, we establish undecidability for the concept satisfiability problem for ALCvpl extended with nominals. Interestingly, our undecidability proof relies only on one single non-regular (visibly-pushdown) language, namely on r#s# := { r^n s^n | n in N } for fixed role names r and s. Finally, in contrast to the classical database setting, we establish undecidability of query entailment for queries involving non-regular atoms from r#s#, already in the case of ALC-TBoxes.

Judgment aggregation is a framework to aggregate individual opinions on multiple, logically connected issues into a collective outcome. It is open to manipulative attacks such as \textsc{Manipulation} where judges cast their judgments strategically. Previous works have shown that most computational problems corresponding to these manipulative attacks are \NP-hard. This desired computational barrier, however, often relies on formulas that are either of unbounded size or of complex structure. We revisit the computational complexity for various \textsc{Manipulation} and \textsc{Bribery} problems in judgment aggregation, now focusing on simple and realistic formulas. We restrict all formulas to be clauses that are (positive) monotone, Horn-clauses, or have bounded length. For basic variants of \textsc{Manipulation}, we show that these restrictions make several variants, which were in general known to be \NP-hard, polynomial-time solvable. Moreover, we provide a P vs.\ NP dichotomy for a large class of clause restrictions (generalizing monotone and Horn clauses) by showing a close relationship between variants of \textsc{Manipulation} and variants of \textsc{Satisfiability}. For Hamming distance based \textsc{Manipulation}, we show that \NP-hardness even holds for positive monotone clauses of length three, but the problem becomes polynomial-time solvable for positive monotone clauses of length two. For \textsc{Bribery}, we show that \NP-hardness even holds for positive monotone clauses of length two, but it becomes polynomial-time solvable for the same clause set if there is a constant budget.

Hand-crafted, logic-based state and action representations have been widely used to overcome the intractable computational complexity of long-horizon robot planning problems, including task and motion planning problems. However, creating such representations requires experts with strong intuitions and detailed knowledge about the robot and the tasks it may need to accomplish in a given setting. Removing this dependency on human intuition is a highly active research area. This paper presents the first approach for autonomously learning generalizable, logic-based relational representations for abstract states and actions starting from unannotated high-dimensional, real-valued robot trajectories. The learned representations constitute auto-invented PDDL-like domain models. Empirical results in deterministic settings show that powerful abstract representations can be learned from just a handful of robot trajectories; the learned relational representations include but go beyond classical, intuitive notions of high-level actions; and that the learned models allow planning algorithms to scale to tasks that were previously beyond the scope of planning without hand-crafted abstractions.

Laser line scanners are increasingly being used in the subsea industry for high-resolution mapping and infrastructure inspection. However, calibrating the 3D pose of the scanner relative to the vehicle is a perennial source of confusion and frustration for industrial surveyors. This work describes three novel algorithms for laser-to-vehicle extrinsic calibration using naturally occurring features. Each algorithm makes a different assumption on the quality of the vehicle trajectory estimate, enabling good calibration results in a wide range of situations. A regularization technique is used to address low-observability scenarios frequently encountered in practice with large, rotationally stable subsea vehicles. Experimental results are provided for two field datasets, including the recently discovered wreck of the Endurance.

Edge computing facilitates low-latency services at the network's edge by distributing computation, communication, and storage resources within the geographic proximity of mobile and Internet-of-Things (IoT) devices. The recent advancement in Unmanned Aerial Vehicles (UAVs) technologies has opened new opportunities for edge computing in military operations, disaster response, or remote areas where traditional terrestrial networks are limited or unavailable. In such environments, UAVs can be deployed as aerial edge servers or relays to facilitate edge computing services. This form of computing is also known as UAV-enabled Edge Computing (UEC), which offers several unique benefits such as mobility, line-of-sight, flexibility, computational capability, and cost-efficiency. However, the resources on UAVs, edge servers, and IoT devices are typically very limited in the context of UEC. Efficient resource management is, therefore, a critical research challenge in UEC. In this article, we present a survey on the existing research in UEC from the resource management perspective. We identify a conceptual architecture, different types of collaborations, wireless communication models, research directions, key techniques and performance indicators for resource management in UEC. We also present a taxonomy of resource management in UEC. Finally, we identify and discuss some open research challenges that can stimulate future research directions for resource management in UEC.

Spatio-temporal forecasting is challenging attributing to the high nonlinearity in temporal dynamics as well as complex location-characterized patterns in spatial domains, especially in fields like weather forecasting. Graph convolutions are usually used for modeling the spatial dependency in meteorology to handle the irregular distribution of sensors' spatial location. In this work, a novel graph-based convolution for imitating the meteorological flows is proposed to capture the local spatial patterns. Based on the assumption of smoothness of location-characterized patterns, we propose conditional local convolution whose shared kernel on nodes' local space is approximated by feedforward networks, with local representations of coordinate obtained by horizon maps into cylindrical-tangent space as its input. The established united standard of local coordinate system preserves the orientation on geography. We further propose the distance and orientation scaling terms to reduce the impacts of irregular spatial distribution. The convolution is embedded in a Recurrent Neural Network architecture to model the temporal dynamics, leading to the Conditional Local Convolution Recurrent Network (CLCRN). Our model is evaluated on real-world weather benchmark datasets, achieving state-of-the-art performance with obvious improvements. We conduct further analysis on local pattern visualization, model's framework choice, advantages of horizon maps and etc.

The recent proliferation of knowledge graphs (KGs) coupled with incomplete or partial information, in the form of missing relations (links) between entities, has fueled a lot of research on knowledge base completion (also known as relation prediction). Several recent works suggest that convolutional neural network (CNN) based models generate richer and more expressive feature embeddings and hence also perform well on relation prediction. However, we observe that these KG embeddings treat triples independently and thus fail to cover the complex and hidden information that is inherently implicit in the local neighborhood surrounding a triple. To this effect, our paper proposes a novel attention based feature embedding that captures both entity and relation features in any given entity's neighborhood. Additionally, we also encapsulate relation clusters and multihop relations in our model. Our empirical study offers insights into the efficacy of our attention based model and we show marked performance gains in comparison to state of the art methods on all datasets.

北京阿比特科技有限公司