亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Mobile malware has become one of the most critical security threats in the era of ubiquitous mobile computing. Despite the intensive efforts from security experts to counteract it, recent years have still witnessed a rapid growth of identified malware samples. This could be partly attributed to the newly-emerged technologies that may constantly open up under-studied attack surfaces for the adversaries. One typical example is the recently-developed mobile machine learning (ML) framework that enables storing and running deep learning (DL) models on mobile devices. Despite obvious advantages, this new feature also inadvertently introduces potential vulnerabilities (e.g., on-device models may be modified for malicious purposes). In this work, we propose a method to generate or transform mobile malware by hiding the malicious payloads inside the parameters of deep learning models, based on a strategy that considers four factors (layer type, layer number, layer coverage and the number of bytes to replace). Utilizing the proposed method, we can run malware in DL mobile applications covertly with little impact on the model performance (i.e., as little as 0.4% drop in accuracy and at most 39ms latency overhead).

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · TOOLS · 語言模型化 · 大語言模型 · 知識 (knowledge) ·
2024 年 2 月 19 日

Recent LLM-driven visual agents mainly focus on solving image-based tasks, which limits their ability to understand dynamic scenes, making it far from real-life applications like guiding students in laboratory experiments and identifying their mistakes. Considering the video modality better reflects the ever-changing nature of real-world scenarios, we devise DoraemonGPT, a comprehensive and conceptually elegant system driven by LLMs to handle dynamic video tasks. Given a video with a question/task, DoraemonGPT begins by converting the input video into a symbolic memory that stores task-related attributes. This structured representation allows for spatial-temporal querying and reasoning by well-designed sub-task tools, resulting in concise intermediate results. Recognizing that LLMs have limited internal knowledge when it comes to specialized domains (e.g., analyzing the scientific principles underlying experiments), we incorporate plug-and-play tools to assess external knowledge and address tasks across different domains. Moreover, a novel LLM-driven planner based on Monte Carlo Tree Search is introduced to explore the large planning space for scheduling various tools. The planner iteratively finds feasible solutions by backpropagating the result's reward, and multiple solutions can be summarized into an improved final answer. We extensively evaluate DoraemonGPT's effectiveness on three benchmarks and challenging in-the-wild scenarios. Code will be released at: //github.com/z-x-yang/DoraemonGPT.

Transformer based code models have impressive performance in many software engineering tasks. However, their effectiveness degrades when symbols are missing or not informative. The reason is that the model may not learn to pay attention to the right correlations/contexts without the help of symbols. We propose a new method to pre-train general code models when symbols are lacking. We observe that in such cases, programs degenerate to something written in a very primitive language. We hence propose to use program analysis to extract contexts a priori (instead of relying on symbols and masked language modeling as in vanilla models). We then leverage a novel attention masking method to only allow the model attending to these contexts, e.g., bi-directional program dependence transitive closures and token co-occurrences. In the meantime, the inherent self-attention mechanism is utilized to learn which of the allowed attentions are more important compared to others. To realize the idea, we enhance the vanilla tokenization and model architecture of a BERT model, construct and utilize attention masks, and introduce a new pre-training algorithm. We pre-train this BERT-like model from scratch, using a dataset of 26 million stripped binary functions with explicit program dependence information extracted by our tool. We apply the model in three downstream tasks: binary similarity, type inference, and malware family classification. Our pre-trained model can improve the SOTAs in these tasks from 53% to 64%, 49% to 60%, and 74% to 94%, respectively. It also substantially outperforms other general pre-training techniques of code understanding models.

With the increase in the computation intensity of the chip, the mismatch between computation layer shapes and the available computation resource significantly limits the utilization of the chip. Driven by this observation, prior works discuss spatial accelerators or dataflow architecture to maximize the throughput. However, using spatial accelerators could potentially increase the execution latency. In this work, we first systematically investigate two execution models: (1) sequentially (temporally) launch one monolithic accelerator, and (2) spatially launch multiple accelerators. From the observations, we find that there is a latency throughput tradeoff between these two execution models, and combining these two strategies together can give us a more efficient latency throughput Pareto front. To achieve this, we propose spatial sequential architecture (SSR) and SSR design automation framework to explore both strategies together when deploying deep learning inference. We use the 7nm AMD Versal ACAP VCK190 board to implement SSR accelerators for four end-to-end transformer-based deep learning models. SSR achieves average throughput gains of 2.53x, 35.71x, and 14.20x under different batch sizes compared to the 8nm Nvidia GPU A10G, 16nm AMD FPGAs ZCU102, and U250. The average energy efficiency gains are 8.51x, 6.75x, and 21.22x, respectively. Compared with the sequential-only solution and spatial-only solution on VCK190, our spatial-sequential-hybrid solutions achieve higher throughput under the same latency requirement and lower latency under the same throughput requirement. We also use SSR analytical models to demonstrate how to use SSR to optimize solutions on other computing platforms, e.g., 14nm Intel Stratix 10 NX.

Modern robotic systems are required to operate in challenging environments, which demand reliable localization under challenging conditions. LiDAR-based localization methods, such as the Iterative Closest Point (ICP) algorithm, can suffer in geometrically uninformative environments that are known to deteriorate point cloud registration performance and push optimization toward divergence along weakly constrained directions. To overcome this issue, this work proposes i) a robust fine-grained localizability detection module, and ii) a localizability-aware constrained ICP optimization module, which couples with the localizability detection module in a unified manner. The proposed localizability detection is achieved by utilizing the correspondences between the scan and the map to analyze the alignment strength against the principal directions of the optimization as part of its fine-grained LiDAR localizability analysis. In the second part, this localizability analysis is then integrated into the scan-to-map point cloud registration to generate drift-free pose updates by enforcing controlled updates or leaving the degenerate directions of the optimization unchanged. The proposed method is thoroughly evaluated and compared to state-of-the-art methods in simulated and real-world experiments, demonstrating the performance and reliability improvement in LiDAR-challenging environments. In all experiments, the proposed framework demonstrates accurate and generalizable localizability detection and robust pose estimation without environment-specific parameter tuning.

Passwords remain the most widely used form of user authentication, despite advancements in other methods. However, their limitations, such as susceptibility to attacks, especially weak passwords defined by human users, are well-documented. The existence of weak human-defined passwords has led to repeated password leaks from websites, many of which are of large scale. While such password leaks are unfortunate security incidents, they provide security researchers and practitioners with good opportunities to learn valuable insights from such leaked passwords, in order to identify ways to improve password policies and other security controls on passwords. Researchers have proposed different data visualisation techniques to help analyse leaked passwords. However, many approaches rely solely on frequency analysis, with limited exploration of distance-based graphs. This paper reports PassViz, a novel method that combines the edit distance with the t-SNE (t-distributed stochastic neighbour embedding) dimensionality reduction algorithm for visualising and analysing leaked passwords in a 2-D space. We implemented PassViz as an easy-to-use command-line tool for visualising large-scale password databases, and also as a graphical user interface (GUI) to support interactive visual analytics of small password databases. Using the "000webhost" leaked database as an example, we show how PassViz can be used to visually analyse different aspects of leaked passwords and to facilitate the discovery of previously unknown password patterns. Overall, our approach empowers researchers and practitioners to gain valuable insights and improve password security through effective data visualisation and analysis.

Integrity is critical for maintaining system security, as it ensures that only genuine software is loaded onto a machine. Although confidential virtual machines (CVMs) function within isolated environments separate from the host, it is important to recognize that users still encounter challenges in maintaining control over the integrity of the code running within the trusted execution environments (TEEs). The presence of a sophisticated operating system (OS) raises the possibility of dynamically creating and executing any code, making user applications within TEEs vulnerable to interference or tampering if the guest OS is compromised. This paper introduces NestedSGX, which leverages virtual machine privilege level (VMPL), a recent hardware feature available on AMD SEV-SNP to enable the creation of hardware enclaves within the guest VM. Similar to Intel SGX, NestedSGX considers the guest OS untrusted for loading potentially malicious code. It ensures that only trusted and measured code executed within the enclave can be remotely attested. To seamlessly protect existing applications, NestedSGX aims for compatibility with Intel SGX by simulating SGX leaf functions. We have also ported the SGX SDK to NestedSGX, enabling the use of existing SGX toolchains and applications in the system. Performance evaluations show that context switches in NestedSGX take about 35,000-37,000 cycles, approximately 2-3 times that of Intel SGX. NestedSGX incurs minimal overhead in most real-world applications, with an average overhead below 5% for most workloads and 22.7% for I/O intensive workloads.

For Web systems, which are accessible to any machine connected to internet, security is a critical concern. Although security testing can be automated by generating crafted inputs as an attacker would do, solutions to automate the test oracle, i.e., distinguishing correct from incorrect outputs for a given input, remain preliminary. Specifically, previous work has demonstrated the potential of metamorphic testing; indeed, security failures can be determined by metamorphic relations that turn valid inputs into malicious inputs and compare their outputs. However, without further guidance, metamorphic relations should be executed on a very large set of valid inputs, which is time consuming and makes metamorphic testing impractical. Hence, in this study, we propose AIM, an approach that automatically selects inputs to reduce testing costs while preserving vulnerability detection capabilities. AIM includes a clustering-based black box approach, identifying similar inputs based on their security properties. It also presents a novel genetic algorithm able to efficiently select diverse inputs while minimizing their total cost. Further, it contains a problem reduction component to reduce the search space and speed up the minimization process. We evaluated the effectiveness of AIM on two well-known web systems, Jenkins and Joomla. We compared AIM's results with four baselines in security testing. Overall, AIM reduced MRs execution time by 84 percent for Jenkins and 82 percent for Joomla while preserving full vulnerability detection. Furthermore, AIM outperformed all the considered baselines regarding vulnerability coverage. Although it has been tuned to work with Web system inputs, AIM could be applied to minimize metamorphic testing cost in other contexts.

Autonomic computing investigates how systems can achieve (user) specified control outcomes on their own, without the intervention of a human operator. Autonomic computing fundamentals have been substantially influenced by those of control theory for closed and open-loop systems. In practice, complex systems may exhibit a number of concurrent and inter-dependent control loops. Despite research into autonomic models for managing computer resources, ranging from individual resources (e.g., web servers) to a resource ensemble (e.g., multiple resources within a data center), research into integrating Artificial Intelligence (AI) and Machine Learning (ML) to improve resource autonomy and performance at scale continues to be a fundamental challenge. The integration of AI/ML to achieve such autonomic and self-management of systems can be achieved at different levels of granularity, from full to human-in-the-loop automation. In this article, leading academics, researchers, practitioners, engineers, and scientists in the fields of cloud computing, AI/ML, and quantum computing join to discuss current research and potential future directions for these fields. Further, we discuss challenges and opportunities for leveraging AI and ML in next generation computing for emerging computing paradigms, including cloud, fog, edge, serverless and quantum computing environments.

Distant supervision can effectively label data for relation extraction, but suffers from the noise labeling problem. Recent works mainly perform soft bag-level noise reduction strategies to find the relatively better samples in a sentence bag, which is suboptimal compared with making a hard decision of false positive samples in sentence level. In this paper, we introduce an adversarial learning framework, which we named DSGAN, to learn a sentence-level true-positive generator. Inspired by Generative Adversarial Networks, we regard the positive samples generated by the generator as the negative samples to train the discriminator. The optimal generator is obtained until the discrimination ability of the discriminator has the greatest decline. We adopt the generator to filter distant supervision training dataset and redistribute the false positive instances into the negative set, in which way to provide a cleaned dataset for relation classification. The experimental results show that the proposed strategy significantly improves the performance of distant supervision relation extraction comparing to state-of-the-art systems.

Object detection is an important and challenging problem in computer vision. Although the past decade has witnessed major advances in object detection in natural scenes, such successes have been slow to aerial imagery, not only because of the huge variation in the scale, orientation and shape of the object instances on the earth's surface, but also due to the scarcity of well-annotated datasets of objects in aerial scenes. To advance object detection research in Earth Vision, also known as Earth Observation and Remote Sensing, we introduce a large-scale Dataset for Object deTection in Aerial images (DOTA). To this end, we collect $2806$ aerial images from different sensors and platforms. Each image is of the size about 4000-by-4000 pixels and contains objects exhibiting a wide variety of scales, orientations, and shapes. These DOTA images are then annotated by experts in aerial image interpretation using $15$ common object categories. The fully annotated DOTA images contains $188,282$ instances, each of which is labeled by an arbitrary (8 d.o.f.) quadrilateral To build a baseline for object detection in Earth Vision, we evaluate state-of-the-art object detection algorithms on DOTA. Experiments demonstrate that DOTA well represents real Earth Vision applications and are quite challenging.

北京阿比特科技有限公司