亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Student opinions for a course are important to educators and administrators, regardless of the type of the course or the institution. Reading and manually analyzing open-ended feedback becomes infeasible for massive volumes of comments at institution level or online forums. In this paper, we collected and pre-processed a large number of course reviews publicly available online. We applied machine learning techniques with the goal to gain insight into student sentiments and topics. Specifically, we utilized current Natural Language Processing (NLP) techniques, such as word embeddings and deep neural networks, and state-of-the-art BERT (Bidirectional Encoder Representations from Transformers), RoBERTa (Robustly optimized BERT approach) and XLNet (Generalized Auto-regression Pre-training). We performed extensive experimentation to compare these techniques versus traditional approaches. This comparative study demonstrates how to apply modern machine learning approaches for sentiment polarity extraction and topic-based classification utilizing course feedback. For sentiment polarity, the top model was RoBERTa with 95.5% accuracy and 84.7% F1-macro, while for topic classification, an SVM (Support Vector Machine) was the top classifier with 79.8% accuracy and 80.6% F1-macro. We also provided an in-depth exploration of the effect of certain hyperparameters on the model performance and discussed our observations. These findings can be used by institutions and course providers as a guide for analyzing their own course feedback using NLP models towards self-evaluation and improvement.

相關內容

Removing information from a machine learning model is a non-trivial task that requires to partially revert the training process. This task is unavoidable when sensitive data, such as credit card numbers or passwords, accidentally enter the model and need to be removed afterwards. Recently, different concepts for machine unlearning have been proposed to address this problem. While these approaches are effective in removing individual data points, they do not scale to scenarios where larger groups of features and labels need to be reverted. In this paper, we propose the first method for unlearning features and labels. Our approach builds on the concept of influence functions and realizes unlearning through closed-form updates of model parameters. It enables to adapt the influence of training data on a learning model retrospectively, thereby correcting data leaks and privacy issues. For learning models with strongly convex loss functions, our method provides certified unlearning with theoretical guarantees. For models with non-convex losses, we empirically show that unlearning features and labels is effective and significantly faster than other strategies.

Knowledge tracing (KT) aims to predict students' responses to practices based on their historical question-answering behaviors. However, most current KT methods focus on improving overall AUC, leaving ample room for optimization in modeling sequences of excessive or insufficient lengths. As sequences get longer, computational costs will increase exponentially. Therefore, KT methods usually truncate sequences to an acceptable length, which makes it difficult for models on online service systems to capture complete historical practice behaviors of students with too long sequences. Conversely, modeling students with short practice sequences using most KT methods may result in overfitting due to limited observation samples. To address the above limitations, we propose a model called Sequence-Flexible Knowledge Tracing (SFKT).

Simulation is essential to reinforcement learning (RL) before implementation in the real world, especially for safety-critical applications like robot manipulation. Conventionally, RL agents are sensitive to the discrepancies between the simulation and the real world, known as the sim-to-real gap. The application of domain randomization, a technique used to fill this gap, is limited to the imposition of heuristic-randomized models. {We investigate the properties of intrinsic stochasticity of real-time simulation (RT-IS) of off-the-shelf simulation software and its potential to improve RL performance. This improvement includes a higher tolerance to noise and model imprecision and superiority to conventional domain randomization in terms of ease of use and automation. Firstly, we conduct analytical studies to measure the correlation of RT-IS with the utilization of computer hardware and validate its comparability with the natural stochasticity of a physical robot. Then, we exploit the RT-IS feature in the training of an RL agent. The simulation and physical experiment results verify the feasibility and applicability of RT-IS to robust agent training for robot manipulation tasks. The RT-IS-powered RL agent outperforms conventional agents on robots with modeling uncertainties. RT-IS requires less heuristic randomization, is not task-dependent, and achieves better generalizability than the conventional domain-randomization-powered agents. Our findings provide a new perspective on the sim-to-real problem in practical applications like robot manipulation tasks.

Spectral methods have myriad applications in high-dimensional statistics and data science, and while previous works have primarily focused on $\ell_2$ or $\ell_{2,\infty}$ eigenvector and singular vector perturbation theory, in many settings these analyses fall short of providing the fine-grained guarantees required for various inferential tasks. In this paper we study statistical inference for linear functions of eigenvectors and principal components with a particular emphasis on the setting where gaps between eigenvalues may be extremely small relative to the corresponding spiked eigenvalue, a regime which has been oft-neglected in the literature. It has been previously established that linear functions of eigenvectors and principal components incur a non-negligible bias, so in this work we provide Berry-Esseen bounds for empirical linear forms and their debiased counterparts respectively in the matrix denoising model and the spiked principal component analysis model, both under Gaussian noise. Next, we propose data-driven estimators for the appropriate bias and variance quantities resulting in approximately valid confidence intervals, and we demonstrate our theoretical results through numerical simulations. We further apply our results to obtain distributional theory and confidence intervals for eigenvector entries, for which debiasing is not necessary. Crucially, our proposed confidence intervals and bias-correction procedures can all be computed directly from data without sample-splitting and are asymptotically valid under minimal assumptions on the eigengap and signal strength. Furthermore, our Berry-Esseen bounds clearly reflect the effects of both signal strength and eigenvalue closeness on the estimation and inference tasks.

There is debate over whether Asian American students are admitted to selective colleges and universities at lower rates than white students with similar academic qualifications. However, there have been few empirical investigations of this issue, in large part due to a dearth of data. Here we present the results from analyzing 685,709 applications from Asian American and white students to a subset of selective U.S. institutions over five application cycles, beginning with the 2015-2016 cycle. The dataset does not include admissions decisions, and so we construct a proxy based in part on enrollment choices. Based on this proxy, we estimate the odds that Asian American applicants were admitted to at least one of the schools we consider were 28% lower than the odds for white students with similar test scores, grade-point averages, and extracurricular activities. The gap was particularly pronounced for students of South Asian descent (49% lower odds). We trace this pattern in part to two factors. First, many selective colleges openly give preference to the children of alumni, and we find that white applicants were substantially more likely to have such legacy status than Asian applicants, especially South Asian applicants. Second, after adjusting for observed student characteristics, the institutions we consider appear less likely to admit students from geographic regions with relatively high shares of applicants who are Asian. We hope these results inform ongoing discussions on the equity of college admissions policies.

In contrast to batch learning where all training data is available at once, continual learning represents a family of methods that accumulate knowledge and learn continuously with data available in sequential order. Similar to the human learning process with the ability of learning, fusing, and accumulating new knowledge coming at different time steps, continual learning is considered to have high practical significance. Hence, continual learning has been studied in various artificial intelligence tasks. In this paper, we present a comprehensive review of the recent progress of continual learning in computer vision. In particular, the works are grouped by their representative techniques, including regularization, knowledge distillation, memory, generative replay, parameter isolation, and a combination of the above techniques. For each category of these techniques, both its characteristics and applications in computer vision are presented. At the end of this overview, several subareas, where continuous knowledge accumulation is potentially helpful while continual learning has not been well studied, are discussed.

The rapid recent progress in machine learning (ML) has raised a number of scientific questions that challenge the longstanding dogma of the field. One of the most important riddles is the good empirical generalization of overparameterized models. Overparameterized models are excessively complex with respect to the size of the training dataset, which results in them perfectly fitting (i.e., interpolating) the training data, which is usually noisy. Such interpolation of noisy data is traditionally associated with detrimental overfitting, and yet a wide range of interpolating models -- from simple linear models to deep neural networks -- have recently been observed to generalize extremely well on fresh test data. Indeed, the recently discovered double descent phenomenon has revealed that highly overparameterized models often improve over the best underparameterized model in test performance. Understanding learning in this overparameterized regime requires new theory and foundational empirical studies, even for the simplest case of the linear model. The underpinnings of this understanding have been laid in very recent analyses of overparameterized linear regression and related statistical learning tasks, which resulted in precise analytic characterizations of double descent. This paper provides a succinct overview of this emerging theory of overparameterized ML (henceforth abbreviated as TOPML) that explains these recent findings through a statistical signal processing perspective. We emphasize the unique aspects that define the TOPML research area as a subfield of modern ML theory and outline interesting open questions that remain.

The dominating NLP paradigm of training a strong neural predictor to perform one task on a specific dataset has led to state-of-the-art performance in a variety of applications (eg. sentiment classification, span-prediction based question answering or machine translation). However, it builds upon the assumption that the data distribution is stationary, ie. that the data is sampled from a fixed distribution both at training and test time. This way of training is inconsistent with how we as humans are able to learn from and operate within a constantly changing stream of information. Moreover, it is ill-adapted to real-world use cases where the data distribution is expected to shift over the course of a model's lifetime. The first goal of this thesis is to characterize the different forms this shift can take in the context of natural language processing, and propose benchmarks and evaluation metrics to measure its effect on current deep learning architectures. We then proceed to take steps to mitigate the effect of distributional shift on NLP models. To this end, we develop methods based on parametric reformulations of the distributionally robust optimization framework. Empirically, we demonstrate that these approaches yield more robust models as demonstrated on a selection of realistic problems. In the third and final part of this thesis, we explore ways of efficiently adapting existing models to new domains or tasks. Our contribution to this topic takes inspiration from information geometry to derive a new gradient update rule which alleviate catastrophic forgetting issues during adaptation.

Despite its great success, machine learning can have its limits when dealing with insufficient training data. A potential solution is the additional integration of prior knowledge into the training process which leads to the notion of informed machine learning. In this paper, we present a structured overview of various approaches in this field. We provide a definition and propose a concept for informed machine learning which illustrates its building blocks and distinguishes it from conventional machine learning. We introduce a taxonomy that serves as a classification framework for informed machine learning approaches. It considers the source of knowledge, its representation, and its integration into the machine learning pipeline. Based on this taxonomy, we survey related research and describe how different knowledge representations such as algebraic equations, logic rules, or simulation results can be used in learning systems. This evaluation of numerous papers on the basis of our taxonomy uncovers key methods in the field of informed machine learning.

Sampling methods (e.g., node-wise, layer-wise, or subgraph) has become an indispensable strategy to speed up training large-scale Graph Neural Networks (GNNs). However, existing sampling methods are mostly based on the graph structural information and ignore the dynamicity of optimization, which leads to high variance in estimating the stochastic gradients. The high variance issue can be very pronounced in extremely large graphs, where it results in slow convergence and poor generalization. In this paper, we theoretically analyze the variance of sampling methods and show that, due to the composite structure of empirical risk, the variance of any sampling method can be decomposed into \textit{embedding approximation variance} in the forward stage and \textit{stochastic gradient variance} in the backward stage that necessities mitigating both types of variance to obtain faster convergence rate. We propose a decoupled variance reduction strategy that employs (approximate) gradient information to adaptively sample nodes with minimal variance, and explicitly reduces the variance introduced by embedding approximation. We show theoretically and empirically that the proposed method, even with smaller mini-batch sizes, enjoys a faster convergence rate and entails a better generalization compared to the existing methods.

北京阿比特科技有限公司