The increasing frequency of mass shootings in the United States has, unfortunately, become a norm. While the issue of gun control in the US involves complex legal concerns, there are also societal issues at play. One such social issue is so-called "gun culture," i.e., a general set of beliefs and actions related to gun ownership. However relatively little is known about gun culture, and even less is known when it comes to fringe online communities. This is especially worrying considering the aforementioned rise in mass shootings and numerous instances of shooters being radicalized online. To address this gap, we explore gun culture on /k/, 4chan's weapons board. More specifically, using a variety of quantitative techniques, we examine over 4M posts on /k/ and position their discussion within the larger body of theoretical understanding of gun culture. Among other things, our findings suggest that gun culture on /k/ covers a relatively diverse set of topics (with a particular focus on legal discussion), some of which are signals of fetishism.
Building on the progress in Boolean satisfiability (SAT) solving over the last decades, maximum satisfiability (MaxSAT) has become a viable approach for solving NP-hard optimization problems, but ensuring correctness of MaxSAT solvers has remained an important concern. For SAT, this is largely a solved problem thanks to the use of proof logging, meaning that solvers emit machine-verifiable proofs of (un)satisfiability to certify correctness. However, for MaxSAT, proof logging solvers have started being developed only very recently. Moreover, these nascent efforts have only targeted the core solving process, ignoring the preprocessing phase where input problem instances can be substantially reformulated before being passed on to the solver proper. In this work, we demonstrate how pseudo-Boolean proof logging can be used to certify the correctness of a wide range of modern MaxSAT preprocessing techniques. By combining and extending the VeriPB and CakePB tools, we provide formally verified, end-to-end proof checking that the input and preprocessed output MaxSAT problem instances have the same optimal value. An extensive evaluation on applied MaxSAT benchmarks shows that our approach is feasible in practice.
Deep Learning (DL) frameworks play a critical role in advancing artificial intelligence, and their rapid growth underscores the need for a comprehensive understanding of software quality and maintainability. DL frameworks, like other systems, are prone to code clones. Code clones refer to identical or highly similar source code fragments within the same project or even across different projects. Code cloning can have positive and negative implications for software development, influencing maintenance, readability, and bug propagation. In this paper, we aim to address the knowledge gap concerning the evolutionary dimension of code clones in DL frameworks and the extent of code reuse across these frameworks. We empirically analyze code clones in nine popular DL frameworks, i.e., TensorFlow, Paddle, PyTorch, Aesara, Ray, MXNet, Keras, Jax and BentoML, to investigate (1) the characteristics of the long-term code cloning evolution over releases in each framework, (2) the short-term, i.e., within-release, code cloning patterns and their influence on the long-term trends, and (3) the file-level code clones within the DL frameworks. Our findings reveal that DL frameworks adopt four distinct cloning trends and that these trends present some common and distinct characteristics. For instance, bug-fixing activities persistently happen in clones irrespective of the clone evolutionary trend but occur more in the "Serpentine" trend. Moreover, the within release level investigation demonstrates that short-term code cloning practices impact long-term cloning trends. The cross-framework code clone investigation reveals the presence of functional and architectural adaptation file-level cross-framework code clones across the nine studied frameworks. We provide insights that foster robust clone practices and collaborative maintenance in the development of DL frameworks.
We propose a test problem for Navier-Stokes solvers based on the flow around a cylinder. We choose a range of Reynolds numbers for which the flow is time-dependent but can be characterized as essentially two-dimensional. The test problem requires accurate resolution of chaotic dynamics over a long time interval. It also requires the use of a relatively large computational domain, part of which is curved, and it requires evaluation of derivatives of the solution and pressure on the curved boundary. We review the performance of different finite element methods for the proposed range of Reynolds numbers. These tests indicate that some of the most established methods do not capture the correct behavior.
The right to be forgotten (RTBF) seeks to safeguard individuals from the enduring effects of their historical actions by implementing machine-learning techniques. These techniques facilitate the deletion of previously acquired knowledge without requiring extensive model retraining. However, they often overlook a critical issue: unlearning processes bias. This bias emerges from two main sources: (1) data-level bias, characterized by uneven data removal, and (2) algorithm-level bias, which leads to the contamination of the remaining dataset, thereby degrading model accuracy. In this work, we analyze the causal factors behind the unlearning process and mitigate biases at both data and algorithmic levels. Typically, we introduce an intervention-based approach, where knowledge to forget is erased with a debiased dataset. Besides, we guide the forgetting procedure by leveraging counterfactual examples, as they maintain semantic data consistency without hurting performance on the remaining dataset. Experimental results demonstrate that our method outperforms existing machine unlearning baselines on evaluation metrics.
The concept of causality plays an important role in human cognition . In the past few decades, causal inference has been well developed in many fields, such as computer science, medicine, economics, and education. With the advancement of deep learning techniques, it has been increasingly used in causal inference against counterfactual data. Typically, deep causal models map the characteristics of covariates to a representation space and then design various objective optimization functions to estimate counterfactual data unbiasedly based on the different optimization methods. This paper focuses on the survey of the deep causal models, and its core contributions are as follows: 1) we provide relevant metrics under multiple treatments and continuous-dose treatment; 2) we incorporate a comprehensive overview of deep causal models from both temporal development and method classification perspectives; 3) we assist a detailed and comprehensive classification and analysis of relevant datasets and source code.
Emotion recognition in conversation (ERC) aims to detect the emotion label for each utterance. Motivated by recent studies which have proven that feeding training examples in a meaningful order rather than considering them randomly can boost the performance of models, we propose an ERC-oriented hybrid curriculum learning framework. Our framework consists of two curricula: (1) conversation-level curriculum (CC); and (2) utterance-level curriculum (UC). In CC, we construct a difficulty measurer based on "emotion shift" frequency within a conversation, then the conversations are scheduled in an "easy to hard" schema according to the difficulty score returned by the difficulty measurer. For UC, it is implemented from an emotion-similarity perspective, which progressively strengthens the model's ability in identifying the confusing emotions. With the proposed model-agnostic hybrid curriculum learning strategy, we observe significant performance boosts over a wide range of existing ERC models and we are able to achieve new state-of-the-art results on four public ERC datasets.
In the era of deep learning, modeling for most NLP tasks has converged to several mainstream paradigms. For example, we usually adopt the sequence labeling paradigm to solve a bundle of tasks such as POS-tagging, NER, Chunking, and adopt the classification paradigm to solve tasks like sentiment analysis. With the rapid progress of pre-trained language models, recent years have observed a rising trend of Paradigm Shift, which is solving one NLP task by reformulating it as another one. Paradigm shift has achieved great success on many tasks, becoming a promising way to improve model performance. Moreover, some of these paradigms have shown great potential to unify a large number of NLP tasks, making it possible to build a single model to handle diverse tasks. In this paper, we review such phenomenon of paradigm shifts in recent years, highlighting several paradigms that have the potential to solve different NLP tasks.
Emotion plays an important role in detecting fake news online. When leveraging emotional signals, the existing methods focus on exploiting the emotions of news contents that conveyed by the publishers (i.e., publisher emotion). However, fake news is always fabricated to evoke high-arousal or activating emotions of people to spread like a virus, so the emotions of news comments that aroused by the crowd (i.e., social emotion) can not be ignored. Furthermore, it needs to be explored whether there exists a relationship between publisher emotion and social emotion (i.e., dual emotion), and how the dual emotion appears in fake news. In the paper, we propose Dual Emotion Features to mine dual emotion and the relationship between them for fake news detection. And we design a universal paradigm to plug it into any existing detectors as an enhancement. Experimental results on three real-world datasets indicate the effectiveness of the proposed features.
Contextual embeddings, such as ELMo and BERT, move beyond global word representations like Word2Vec and achieve ground-breaking performance on a wide range of natural language processing tasks. Contextual embeddings assign each word a representation based on its context, thereby capturing uses of words across varied contexts and encoding knowledge that transfers across languages. In this survey, we review existing contextual embedding models, cross-lingual polyglot pre-training, the application of contextual embeddings in downstream tasks, model compression, and model analyses.
We introduce an effective model to overcome the problem of mode collapse when training Generative Adversarial Networks (GAN). Firstly, we propose a new generator objective that finds it better to tackle mode collapse. And, we apply an independent Autoencoders (AE) to constrain the generator and consider its reconstructed samples as "real" samples to slow down the convergence of discriminator that enables to reduce the gradient vanishing problem and stabilize the model. Secondly, from mappings between latent and data spaces provided by AE, we further regularize AE by the relative distance between the latent and data samples to explicitly prevent the generator falling into mode collapse setting. This idea comes when we find a new way to visualize the mode collapse on MNIST dataset. To the best of our knowledge, our method is the first to propose and apply successfully the relative distance of latent and data samples for stabilizing GAN. Thirdly, our proposed model, namely Generative Adversarial Autoencoder Networks (GAAN), is stable and has suffered from neither gradient vanishing nor mode collapse issues, as empirically demonstrated on synthetic, MNIST, MNIST-1K, CelebA and CIFAR-10 datasets. Experimental results show that our method can approximate well multi-modal distribution and achieve better results than state-of-the-art methods on these benchmark datasets. Our model implementation is published here: //github.com/tntrung/gaan