Existing approaches to video understanding, mainly designed for short videos from a third-person perspective, are limited in their applicability in certain fields, such as robotics. In this paper, we delve into open-ended question-answering (QA) in long, egocentric videos, which allows individuals or robots to inquire about their own past visual experiences. This task presents unique challenges, including the complexity of temporally grounding queries within extensive video content, the high resource demands for precise data annotation, and the inherent difficulty of evaluating open-ended answers due to their ambiguous nature. Our proposed approach tackles these challenges by (i) integrating query grounding and answering within a unified model to reduce error propagation; (ii) employing large language models for efficient and scalable data synthesis; and (iii) introducing a close-ended QA task for evaluation, to manage answer ambiguity. Extensive experiments demonstrate the effectiveness of our method, which also achieves state-of-the-art performance on the QAEgo4D and Ego4D-NLQ benchmarks. We plan to publicly release the codes, model, and constructed datasets for future research.
The core of video understanding tasks, such as recognition, captioning, and tracking, is to automatically detect objects or actions in a video and analyze their temporal evolution. Despite sharing a common goal, different tasks often rely on distinct model architectures and annotation formats. In contrast, natural language processing benefits from a unified output space, i.e., text sequences, which simplifies the training of powerful foundational language models, such as GPT-3, with extensive training corpora. Inspired by this, we seek to unify the output space of video understanding tasks by using languages as labels and additionally introducing time and box tokens. In this way, a variety of video tasks could be formulated as video-grounded token generation. This enables us to address various types of video tasks, including classification (such as action recognition), captioning (covering clip captioning, video question answering, and dense video captioning), and localization tasks (such as visual object tracking) within a fully shared encoder-decoder architecture, following a generative framework. Through comprehensive experiments, we demonstrate such a simple and straightforward idea is quite effective and can achieve state-of-the-art or competitive results on seven video benchmarks, providing a novel perspective for more universal video understanding. Code is available at //github.com/wangjk666/OmniVid.
News organizations today rely on AI tools to increase efficiency and productivity across various tasks in news production and distribution. These tools are oriented towards stakeholders such as reporters, editors, and readers. However, practitioners also express reservations around adopting AI technologies into the newsroom, due to the technical and ethical challenges involved in evaluating AI technology and its return on investments. This is to some extent a result of the lack of domain-specific strategies to evaluate AI models and applications. In this paper, we consider different aspects of AI evaluation (model outputs, interaction, and ethics) that can benefit from domain-specific tailoring, and suggest examples of how journalistic considerations can lead to specialized metrics or strategies. In doing so, we lay out a potential framework to guide AI evaluation in journalism, such as seen in other disciplines (e.g. law, healthcare). We also consider directions for future work, as well as how our approach might generalize to other domains.
Image-to-image translation is a technique that focuses on transferring images from one domain to another while maintaining the essential content representations. In recent years, image-to-image translation has gained significant attention and achieved remarkable advancements due to its diverse applications in computer vision and image processing tasks. In this work, we propose an innovative method for image translation between different domains. For high-resolution image translation tasks, we use a grayscale adjustment method to achieve pixel-level translation. For other tasks, we utilize the Pix2PixHD model with a coarse-to-fine generator, multi-scale discriminator, and improved loss to enhance the image translation performance. On the other hand, to tackle the issue of sparse training data, we adopt model weight initialization from other task to optimize the performance of the current task.
The classical tests in the instrumental variable model can behave arbitrarily if the data is contaminated. For instance, one outlying observation can be enough to change the outcome of a test. We develop a framework to construct testing procedures that are robust to weak instruments, outliers and heavy-tailed errors in the instrumental variable model. The framework is constructed upon M-estimators. By deriving the influence functions of the classical weak instrument robust tests, such as the Anderson-Rubin test, K-test and the conditional likelihood ratio (CLR) test, we prove their unbounded sensitivity to infinitesimal contamination. Therefore, we construct contamination resistant/robust alternatives. In particular, we show how to construct a robust CLR statistic based on Mallows type M-estimators and show that its asymptotic distribution is the same as that of the (classical) CLR statistic. The theoretical results are corroborated by a simulation study. Finally, we revisit three empirical studies affected by outliers and demonstrate how the new robust tests can be used in practice.
We prove that a single-layer neural network trained with the online actor critic algorithm converges in distribution to a random ordinary differential equation (ODE) as the number of hidden units and the number of training steps $\rightarrow \infty$. In the online actor-critic algorithm, the distribution of the data samples dynamically changes as the model is updated, which is a key challenge for any convergence analysis. We establish the geometric ergodicity of the data samples under a fixed actor policy. Then, using a Poisson equation, we prove that the fluctuations of the model updates around the limit distribution due to the randomly-arriving data samples vanish as the number of parameter updates $\rightarrow \infty$. Using the Poisson equation and weak convergence techniques, we prove that the actor neural network and critic neural network converge to the solutions of a system of ODEs with random initial conditions. Analysis of the limit ODE shows that the limit critic network will converge to the true value function, which will provide the actor an asymptotically unbiased estimate of the policy gradient. We then prove that the limit actor network will converge to a stationary point.
Turning pass-through network architectures into iterative ones, which use their own output as input, is a well-known approach for boosting performance. In this paper, we argue that such architectures offer an additional benefit: The convergence rate of their successive outputs is highly correlated with the accuracy of the value to which they converge. Thus, we can use the convergence rate as a useful proxy for uncertainty. This results in an approach to uncertainty estimation that provides state-of-the-art estimates at a much lower computational cost than techniques like Ensembles, and without requiring any modifications to the original iterative model. We demonstrate its practical value by embedding it in two application domains: road detection in aerial images and the estimation of aerodynamic properties of 2D and 3D shapes.
We present a large-scale study on unsupervised spatiotemporal representation learning from videos. With a unified perspective on four recent image-based frameworks, we study a simple objective that can easily generalize all these methods to space-time. Our objective encourages temporally-persistent features in the same video, and in spite of its simplicity, it works surprisingly well across: (i) different unsupervised frameworks, (ii) pre-training datasets, (iii) downstream datasets, and (iv) backbone architectures. We draw a series of intriguing observations from this study, e.g., we discover that encouraging long-spanned persistency can be effective even if the timespan is 60 seconds. In addition to state-of-the-art results in multiple benchmarks, we report a few promising cases in which unsupervised pre-training can outperform its supervised counterpart. Code is made available at //github.com/facebookresearch/SlowFast
Deep learning has revolutionized many machine learning tasks in recent years, ranging from image classification and video processing to speech recognition and natural language understanding. The data in these tasks are typically represented in the Euclidean space. However, there is an increasing number of applications where data are generated from non-Euclidean domains and are represented as graphs with complex relationships and interdependency between objects. The complexity of graph data has imposed significant challenges on existing machine learning algorithms. Recently, many studies on extending deep learning approaches for graph data have emerged. In this survey, we provide a comprehensive overview of graph neural networks (GNNs) in data mining and machine learning fields. We propose a new taxonomy to divide the state-of-the-art graph neural networks into different categories. With a focus on graph convolutional networks, we review alternative architectures that have recently been developed; these learning paradigms include graph attention networks, graph autoencoders, graph generative networks, and graph spatial-temporal networks. We further discuss the applications of graph neural networks across various domains and summarize the open source codes and benchmarks of the existing algorithms on different learning tasks. Finally, we propose potential research directions in this fast-growing field.
Learning with limited data is a key challenge for visual recognition. Few-shot learning methods address this challenge by learning an instance embedding function from seen classes and apply the function to instances from unseen classes with limited labels. This style of transfer learning is task-agnostic: the embedding function is not learned optimally discriminative with respect to the unseen classes, where discerning among them is the target task. In this paper, we propose a novel approach to adapt the embedding model to the target classification task, yielding embeddings that are task-specific and are discriminative. To this end, we employ a type of self-attention mechanism called Transformer to transform the embeddings from task-agnostic to task-specific by focusing on relating instances from the test instances to the training instances in both seen and unseen classes. Our approach also extends to both transductive and generalized few-shot classification, two important settings that have essential use cases. We verify the effectiveness of our model on two standard benchmark few-shot classification datasets --- MiniImageNet and CUB, where our approach demonstrates state-of-the-art empirical performance.
Adversarial attacks to image classification systems present challenges to convolutional networks and opportunities for understanding them. This study suggests that adversarial perturbations on images lead to noise in the features constructed by these networks. Motivated by this observation, we develop new network architectures that increase adversarial robustness by performing feature denoising. Specifically, our networks contain blocks that denoise the features using non-local means or other filters; the entire networks are trained end-to-end. When combined with adversarial training, our feature denoising networks substantially improve the state-of-the-art in adversarial robustness in both white-box and black-box attack settings. On ImageNet, under 10-iteration PGD white-box attacks where prior art has 27.9% accuracy, our method achieves 55.7%; even under extreme 2000-iteration PGD white-box attacks, our method secures 42.6% accuracy. A network based on our method was ranked first in Competition on Adversarial Attacks and Defenses (CAAD) 2018 --- it achieved 50.6% classification accuracy on a secret, ImageNet-like test dataset against 48 unknown attackers, surpassing the runner-up approach by ~10%. Code and models will be made publicly available.