亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The paper addresses the problem of finding the causal direction between two associated variables. The proposed solution is to build an autoencoder of their joint distribution and to maximize its estimation capacity relative to both the marginal distributions. It is shown that the resulting two capacities cannot, in general, be equal. This leads to a new criterion for causal discovery: the higher capacity is consistent with the unconstrained choice of a distribution representing the cause while the lower capacity reflects the constraints imposed by the mechanism on the distribution of the effect. Estimation capacity is defined as the ability of the auto-encoder to represent arbitrary datasets. A regularization term forces it to decide which one of the variables to model in a more generic way i.e., while maintaining higher model capacity. The causal direction is revealed by the constraints encountered while encoding the data instead of being measured as a property of the data itself. The idea is implemented and tested using a restricted Boltzmann machine.

相關內容

自(zi)(zi)動編(bian)(bian)碼(ma)(ma)器(qi)是一種人工神經網(wang)絡,用于以無(wu)監督的(de)方(fang)(fang)式(shi)(shi)學(xue)習有(you)效的(de)數據(ju)編(bian)(bian)碼(ma)(ma)。自(zi)(zi)動編(bian)(bian)碼(ma)(ma)器(qi)的(de)目的(de)是通(tong)過訓練(lian)網(wang)絡忽略信號(hao)“噪(zao)聲”來學(xue)習一組數據(ju)的(de)表示(shi)(shi)(編(bian)(bian)碼(ma)(ma)),通(tong)常用于降維。與(yu)簡化方(fang)(fang)面一起(qi),學(xue)習了(le)重構方(fang)(fang)面,在(zai)此,自(zi)(zi)動編(bian)(bian)碼(ma)(ma)器(qi)嘗試從簡化編(bian)(bian)碼(ma)(ma)中生(sheng)成盡可能接近其原始輸入(ru)的(de)表示(shi)(shi)形式(shi)(shi),從而得(de)到其名稱。基本模型(xing)存在(zai)幾種變體,其目的(de)是迫(po)使學(xue)習的(de)輸入(ru)表示(shi)(shi)形式(shi)(shi)具有(you)有(you)用的(de)屬性。自(zi)(zi)動編(bian)(bian)碼(ma)(ma)器(qi)可有(you)效地解(jie)決許多應(ying)用問題,從面部識別到獲取單詞的(de)語義。

Although understanding and characterizing causal effects have become essential in observational studies, it is challenging when the confounders are high-dimensional. In this article, we develop a general framework $\textit{CausalEGM}$ for estimating causal effects by encoding generative modeling, which can be applied in both binary and continuous treatment settings. Under the potential outcome framework with unconfoundedness, we establish a bidirectional transformation between the high-dimensional confounders space and a low-dimensional latent space where the density is known (e.g., multivariate normal distribution). Through this, CausalEGM simultaneously decouples the dependencies of confounders on both treatment and outcome and maps the confounders to the low-dimensional latent space. By conditioning on the low-dimensional latent features, CausalEGM can estimate the causal effect for each individual or the average causal effect within a population. Our theoretical analysis shows that the excess risk for CausalEGM can be bounded through empirical process theory. Under an assumption on encoder-decoder networks, the consistency of the estimate can be guaranteed. In a series of experiments, CausalEGM demonstrates superior performance over existing methods for both binary and continuous treatments. Specifically, we find CausalEGM to be substantially more powerful than competing methods in the presence of large sample sizes and high dimensional confounders. The software of CausalEGM is freely available at //github.com/SUwonglab/CausalEGM.

Recently, addressing spatial confounding has become a major topic in spatial statistics. However, the literature has provided conflicting definitions, and many proposed definitions do not address the issue of confounding as it is understood in causal inference. We define spatial confounding as the existence of an unmeasured causal confounder with a spatial structure. We present a causal inference framework for nonparametric identification of the causal effect of a continuous exposure on an outcome in the presence of spatial confounding. We propose double machine learning (DML), a procedure in which flexible models are used to regress both the exposure and outcome variables on confounders to arrive at a causal estimator with favorable robustness properties and convergence rates, and we prove that this approach is consistent and asymptotically normal under spatial dependence. As far as we are aware, this is the first approach to spatial confounding that does not rely on restrictive parametric assumptions (such as linearity, effect homogeneity, or Gaussianity) for both identification and estimation. We demonstrate the advantages of the DML approach analytically and in simulations. We apply our methods and reasoning to a study of the effect of fine particulate matter exposure during pregnancy on birthweight in California.

Learning the causal structure of observable variables is a central focus for scientific discovery. Bayesian causal discovery methods tackle this problem by learning a posterior over the set of admissible graphs given our priors and observations. Existing methods primarily consider observations from static systems and assume the underlying causal structure takes the form of a directed acyclic graph (DAG). In settings with dynamic feedback mechanisms that regulate the trajectories of individual variables, this acyclicity assumption fails unless we account for time. We focus on learning Bayesian posteriors over cyclic graphs and treat causal discovery as a problem of sparse identification of a dynamical system. This imposes a natural temporal causal order between variables and captures cyclic feedback loops through time. Under this lens, we propose a new framework for Bayesian causal discovery for dynamical systems and present a novel generative flow network architecture (DynGFN) tailored for this task. Our results indicate that DynGFN learns posteriors that better encapsulate the distributions over admissible cyclic causal structures compared to counterpart state-of-the-art approaches.

Currently, it is hard to reap the benefits of deep learning for Bayesian methods, which allow the explicit specification of prior knowledge and accurately capture model uncertainty. We present Prior-Data Fitted Networks (PFNs). PFNs leverage large-scale machine learning techniques to approximate a large set of posteriors. The only requirement for PFNs to work is the ability to sample from a prior distribution over supervised learning tasks (or functions). Our method restates the objective of posterior approximation as a supervised classification problem with a set-valued input: it repeatedly draws a task (or function) from the prior, draws a set of data points and their labels from it, masks one of the labels and learns to make probabilistic predictions for it based on the set-valued input of the rest of the data points. Presented with a set of samples from a new supervised learning task as input, PFNs make probabilistic predictions for arbitrary other data points in a single forward propagation, having learned to approximate Bayesian inference. We demonstrate that PFNs can near-perfectly mimic Gaussian processes and also enable efficient Bayesian inference for intractable problems, with over 200-fold speedups in multiple setups compared to current methods. We obtain strong results in very diverse areas such as Gaussian process regression, Bayesian neural networks, classification for small tabular data sets, and few-shot image classification, demonstrating the generality of PFNs. Code and trained PFNs are released at //github.com/automl/TransformersCanDoBayesianInference.

Learning causal relationships between variables is a fundamental task in causal inference and directed acyclic graphs (DAGs) are a popular choice to represent the causal relationships. As one can recover a causal graph only up to its Markov equivalence class from observations, interventions are often used for the recovery task. Interventions are costly in general and it is important to design algorithms that minimize the number of interventions performed. In this work, we study the problem of identifying the smallest set of interventions required to learn the causal relationships between a subset of edges (target edges). Under the assumptions of faithfulness, causal sufficiency, and ideal interventions, we study this problem in two settings: when the underlying ground truth causal graph is known (subset verification) and when it is unknown (subset search). For the subset verification problem, we provide an efficient algorithm to compute a minimum sized interventional set; we further extend these results to bounded size non-atomic interventions and node-dependent interventional costs. For the subset search problem, in the worst case, we show that no algorithm (even with adaptivity or randomization) can achieve an approximation ratio that is asymptotically better than the vertex cover of the target edges when compared with the subset verification number. This result is surprising as there exists a logarithmic approximation algorithm for the search problem when we wish to recover the whole causal graph. To obtain our results, we prove several interesting structural properties of interventional causal graphs that we believe have applications beyond the subset verification/search problems studied here.

Consider the problem of estimating the causal effect of some attribute of a text document; for example: what effect does writing a polite vs. rude email have on response time? To estimate a causal effect from observational data, we need to adjust for confounding aspects of the text that affect both the treatment and outcome -- e.g., the topic or writing level of the text. These confounding aspects are unknown a priori, so it seems natural to adjust for the entirety of the text (e.g., using a transformer). However, causal identification and estimation procedures rely on the assumption of overlap: for all levels of the adjustment variables, there is randomness leftover so that every unit could have (not) received treatment. Since the treatment here is itself an attribute of the text, it is perfectly determined, and overlap is apparently violated. The purpose of this paper is to show how to handle causal identification and obtain robust causal estimation in the presence of apparent overlap violations. In brief, the idea is to use supervised representation learning to produce a data representation that preserves confounding information while eliminating information that is only predictive of the treatment. This representation then suffices for adjustment and can satisfy overlap. Adapting results on non-parametric estimation, we find that this procedure is robust to conditional outcome misestimation, yielding a low-bias estimator with valid uncertainty quantification under weak conditions. Empirical results show strong improvements in bias and uncertainty quantification relative to the natural baseline.

The study of adaptive data analysis examines how many statistical queries can be answered accurately using a fixed dataset while avoiding false discoveries (statistically inaccurate answers). In this paper, we tackle a question that precedes the field of study: Is data only valuable when it provides accurate answers to statistical queries? To answer this question, we use Stochastic Convex Optimization as a case study. In this model, algorithms are considered as analysts who query an estimate of the gradient of a noisy function at each iteration and move towards its minimizer. It is known that $O(1/\epsilon^2)$ examples can be used to minimize the objective function, but none of the existing methods depend on the accuracy of the estimated gradients along the trajectory. Therefore, we ask: How many samples are needed to minimize a noisy convex function if we require $\epsilon$-accurate estimates of $O(1/\epsilon^2)$ gradients? Or, might it be that inaccurate gradient estimates are \emph{necessary} for finding the minimum of a stochastic convex function at an optimal statistical rate? We provide two partial answers to this question. First, we show that a general analyst (queries that may be maliciously chosen) requires $\Omega(1/\epsilon^3)$ samples, ruling out the possibility of a foolproof mechanism. Second, we show that, under certain assumptions on the oracle, $\tilde \Omega(1/\epsilon^{2.5})$ samples are necessary for gradient descent to interact with the oracle. Our results are in contrast to classical bounds that show that $O(1/\epsilon^2)$ samples can optimize the population risk to an accuracy of $O(\epsilon)$, but with spurious gradients.

Understanding causality helps to structure interventions to achieve specific goals and enables predictions under interventions. With the growing importance of learning causal relationships, causal discovery tasks have transitioned from using traditional methods to infer potential causal structures from observational data to the field of pattern recognition involved in deep learning. The rapid accumulation of massive data promotes the emergence of causal search methods with brilliant scalability. Existing summaries of causal discovery methods mainly focus on traditional methods based on constraints, scores and FCMs, there is a lack of perfect sorting and elaboration for deep learning-based methods, also lacking some considers and exploration of causal discovery methods from the perspective of variable paradigms. Therefore, we divide the possible causal discovery tasks into three types according to the variable paradigm and give the definitions of the three tasks respectively, define and instantiate the relevant datasets for each task and the final causal model constructed at the same time, then reviews the main existing causal discovery methods for different tasks. Finally, we propose some roadmaps from different perspectives for the current research gaps in the field of causal discovery and point out future research directions.

This paper focuses on the expected difference in borrower's repayment when there is a change in the lender's credit decisions. Classical estimators overlook the confounding effects and hence the estimation error can be magnificent. As such, we propose another approach to construct the estimators such that the error can be greatly reduced. The proposed estimators are shown to be unbiased, consistent, and robust through a combination of theoretical analysis and numerical testing. Moreover, we compare the power of estimating the causal quantities between the classical estimators and the proposed estimators. The comparison is tested across a wide range of models, including linear regression models, tree-based models, and neural network-based models, under different simulated datasets that exhibit different levels of causality, different degrees of nonlinearity, and different distributional properties. Most importantly, we apply our approaches to a large observational dataset provided by a global technology firm that operates in both the e-commerce and the lending business. We find that the relative reduction of estimation error is strikingly substantial if the causal effects are accounted for correctly.

Causal inference is a critical research topic across many domains, such as statistics, computer science, education, public policy and economics, for decades. Nowadays, estimating causal effect from observational data has become an appealing research direction owing to the large amount of available data and low budget requirement, compared with randomized controlled trials. Embraced with the rapidly developed machine learning area, various causal effect estimation methods for observational data have sprung up. In this survey, we provide a comprehensive review of causal inference methods under the potential outcome framework, one of the well known causal inference framework. The methods are divided into two categories depending on whether they require all three assumptions of the potential outcome framework or not. For each category, both the traditional statistical methods and the recent machine learning enhanced methods are discussed and compared. The plausible applications of these methods are also presented, including the applications in advertising, recommendation, medicine and so on. Moreover, the commonly used benchmark datasets as well as the open-source codes are also summarized, which facilitate researchers and practitioners to explore, evaluate and apply the causal inference methods.

北京阿比特科技有限公司