亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Integrated sensing and communication (ISAC) capability is envisioned as one key feature for future cellular networks. Classical half-duplex (HD) radar sensing is conducted in a "first-emit-then-listen" manner. One challenge to realize HD ISAC lies in the discrepancy of the two systems' time scheduling for transmitting and receiving. This difficulty can be overcome by full-duplex (FD) transceivers. Besides, ISAC generally has to comprise its communication rate due to realizing sensing functionality. This loss can be compensated by the emerging reconfigurable intelligent surface (RIS) technology. This paper considers the joint design of beamforming, power allocation and signal processing in a FD uplink communication system aided by RIS, which is a highly nonconvex problem. To resolve this challenge, via leveraging the cutting-the-edge majorization-minimization (MM) and penalty-dual-decomposition (PDD) methods, we develop an iterative solution that optimizes all variables via using convex optimization techniques. Besides, by wisely exploiting alternative direction method of multipliers (ADMM) and optimality analysis, we further develop a low complexity solution that updates all variables analytically and runs highly efficiently. Numerical results are provided to verify the effectiveness and efficiency of our proposed algorithms and demonstrate the significant performance boosting by employing RIS in the FD ISAC system.

相關內容

Integration:Integration, the VLSI Journal。 Explanation:集成(cheng),VLSI雜(za)志。 Publisher:Elsevier。 SIT:

The attention mechanism has been proven to be an effective way to improve spiking neural network (SNN). However, based on the fact that the current SNN input data flow is split into tensors to process on GPUs, none of the previous works consider the properties of tensors to implement an attention module. This inspires us to rethink current SNN from the perspective of tensor-relevant theories. Using tensor decomposition, we design the \textit{projected full attention} (PFA) module, which demonstrates excellent results with linearly growing parameters. Specifically, PFA is composed by the \textit{linear projection of spike tensor} (LPST) module and \textit{attention map composing} (AMC) module. In LPST, we start by compressing the original spike tensor into three projected tensors using a single property-preserving strategy with learnable parameters for each dimension. Then, in AMC, we exploit the inverse procedure of the tensor decomposition process to combine the three tensors into the attention map using a so-called connecting factor. To validate the effectiveness of the proposed PFA module, we integrate it into the widely used VGG and ResNet architectures for classification tasks. Our method achieves state-of-the-art performance on both static and dynamic benchmark datasets, surpassing the existing SNN models with Transformer-based and CNN-based backbones.

Graph convolutional networks (GCNs) were a great step towards extending deep learning to unstructured data such as graphs. But GCNs still need a constructed graph to work with. To solve this problem, classical graphs such as $k$-nearest neighbor are usually used to initialize the GCN. Although it is computationally efficient to construct $k$-nn graphs, the constructed graph might not be very useful for learning. In a $k$-nn graph, points are restricted to have a fixed number of edges, and all edges in the graph have equal weights. We present a new way to construct the graph and initialize the GCN. It is based on random projection forest (rpForest). rpForest enables us to assign varying weights on edges indicating varying importance, which enhanced the learning. The number of trees is a hyperparameter in rpForest. We performed spectral analysis to help us setting this parameter in the right range. In the experiments, initializing the GCN using rpForest provides better results compared to $k$-nn initialization.

Coding schemes for several problems in network information theory are constructed starting from point-to-point channel codes that are designed for symmetric channels. Given that the point-to-point codes satisfy certain properties pertaining to the rate, the error probability, and the distribution of decoded sequences, bounds on the performance of the coding schemes are derived and shown to hold irrespective of other properties of the codes. In particular, we consider the problems of lossless and lossy source coding, Slepian-Wolf coding, Wyner-Ziv coding, Berger-Tung coding, multiple description coding, asymmetric channel coding, Gelfand-Pinsker coding, coding for multiple access channels, Marton coding for broadcast channels, and coding for cloud radio access networks (C-RAN's). We show that the coding schemes can achieve the best known inner bounds for these problems, provided that the constituent point-to-point channel codes are rate-optimal. This would allow one to leverage commercial off-the-shelf codes for point-to-point symmetric channels in the practical implementation of codes over networks. Simulation results demonstrate the gain of the proposed coding schemes compared to existing practical solutions to these problems.

With data-outsourcing becoming commonplace, there grows a need for secure outsourcing of data and machine learning models. Namely, data and model owners (client) often have a need for their information to remain private and secure against the potentially untrusted computing resource (server) to whom they want to outsource said data and models to. Various approaches to privacy-preserving machine learning (PPML) have been devised with different techniques and solutions introduced in the past. These solutions often involved one of two compromises: (1) client-server interactions to allow intermediary rounds of decryption and re-encryption of data or (2) complex architectures for multi-party computation. This paper devises a paradigm using Fully Homomorphic Encryption (FHE) that minimizes architectural complexity and removes client-side involvement during the training and prediction lifecycle of machine learning models. In addition, the paradigm proposed in this work achieves both model security as well as data security. To remove client-side involvement, the devised paradigm proposes a no decryption approach that allows the server to handle PPML in its entirety without rounds of decryption and re-encryption. To the best of our knowledge, this paradigm is the first to achieve privacy-preserving decision tree training with no decryption while maintaining a simple client-server architecture.

Thanks to their generative capabilities, large language models (LLMs) have become an invaluable tool for creative processes. These models have the capacity to produce hundreds and thousands of visual and textual outputs, offering abundant inspiration for creative endeavors. But are we harnessing their full potential? We argue that current interaction paradigms fall short, guiding users towards rapid convergence on a limited set of ideas, rather than empowering them to explore the vast latent design space in generative models. To address this limitation, we propose a framework that facilitates the structured generation of design space in which users can seamlessly explore, evaluate, and synthesize a multitude of responses. We demonstrate the feasibility and usefulness of this framework through the design and development of an interactive system, Luminate, and a user study with 8 professional writers. Our work advances how we interact with LLMs for creative tasks, introducing a way to harness the creative potential of LLMs.

Deep discriminative approaches like random forests and deep neural networks have recently found applications in many important real-world scenarios. However, deploying these learning algorithms in safety-critical applications raises concerns, particularly when it comes to ensuring confidence calibration for both in-distribution and out-of-distribution data points. Many popular methods for in-distribution (ID) calibration, such as isotonic regression and Platt's sigmoidal regression, exhibit excellent ID calibration performance but often at the cost of classification accuracy. Moreover, these methods are not calibrated for the entire feature space, leading to overconfidence in the case of out-of-distribution (OOD) samples. In this paper, we leveraged the fact that deep models, including both random forests and deep-nets, learn internal representations which are unions of polytopes with affine activation functions to conceptualize them both as partitioning rules of the feature space. We replace the affine function in each polytope populated by the training data with a Gaussian kernel. We propose sufficient conditions for our proposed methods to be consistent estimators of the corresponding class conditional densities. Moreover, our experiments on both tabular and vision benchmarks show that the proposed approaches obtain well-calibrated posteriors while mostly preserving or improving the classification accuracy of the original algorithm for in-distribution region, and extrapolates beyond the training data to handle out-of-distribution inputs appropriately.

Recent artificial intelligence (AI) systems have reached milestones in "grand challenges" ranging from Go to protein-folding. The capability to retrieve medical knowledge, reason over it, and answer medical questions comparably to physicians has long been viewed as one such grand challenge. Large language models (LLMs) have catalyzed significant progress in medical question answering; Med-PaLM was the first model to exceed a "passing" score in US Medical Licensing Examination (USMLE) style questions with a score of 67.2% on the MedQA dataset. However, this and other prior work suggested significant room for improvement, especially when models' answers were compared to clinicians' answers. Here we present Med-PaLM 2, which bridges these gaps by leveraging a combination of base LLM improvements (PaLM 2), medical domain finetuning, and prompting strategies including a novel ensemble refinement approach. Med-PaLM 2 scored up to 86.5% on the MedQA dataset, improving upon Med-PaLM by over 19% and setting a new state-of-the-art. We also observed performance approaching or exceeding state-of-the-art across MedMCQA, PubMedQA, and MMLU clinical topics datasets. We performed detailed human evaluations on long-form questions along multiple axes relevant to clinical applications. In pairwise comparative ranking of 1066 consumer medical questions, physicians preferred Med-PaLM 2 answers to those produced by physicians on eight of nine axes pertaining to clinical utility (p < 0.001). We also observed significant improvements compared to Med-PaLM on every evaluation axis (p < 0.001) on newly introduced datasets of 240 long-form "adversarial" questions to probe LLM limitations. While further studies are necessary to validate the efficacy of these models in real-world settings, these results highlight rapid progress towards physician-level performance in medical question answering.

Vast amount of data generated from networks of sensors, wearables, and the Internet of Things (IoT) devices underscores the need for advanced modeling techniques that leverage the spatio-temporal structure of decentralized data due to the need for edge computation and licensing (data access) issues. While federated learning (FL) has emerged as a framework for model training without requiring direct data sharing and exchange, effectively modeling the complex spatio-temporal dependencies to improve forecasting capabilities still remains an open problem. On the other hand, state-of-the-art spatio-temporal forecasting models assume unfettered access to the data, neglecting constraints on data sharing. To bridge this gap, we propose a federated spatio-temporal model -- Cross-Node Federated Graph Neural Network (CNFGNN) -- which explicitly encodes the underlying graph structure using graph neural network (GNN)-based architecture under the constraint of cross-node federated learning, which requires that data in a network of nodes is generated locally on each node and remains decentralized. CNFGNN operates by disentangling the temporal dynamics modeling on devices and spatial dynamics on the server, utilizing alternating optimization to reduce the communication cost, facilitating computations on the edge devices. Experiments on the traffic flow forecasting task show that CNFGNN achieves the best forecasting performance in both transductive and inductive learning settings with no extra computation cost on edge devices, while incurring modest communication cost.

Graph neural networks (GNNs) have been proven to be effective in various network-related tasks. Most existing GNNs usually exploit the low-frequency signals of node features, which gives rise to one fundamental question: is the low-frequency information all we need in the real world applications? In this paper, we first present an experimental investigation assessing the roles of low-frequency and high-frequency signals, where the results clearly show that exploring low-frequency signal only is distant from learning an effective node representation in different scenarios. How can we adaptively learn more information beyond low-frequency information in GNNs? A well-informed answer can help GNNs enhance the adaptability. We tackle this challenge and propose a novel Frequency Adaptation Graph Convolutional Networks (FAGCN) with a self-gating mechanism, which can adaptively integrate different signals in the process of message passing. For a deeper understanding, we theoretically analyze the roles of low-frequency signals and high-frequency signals on learning node representations, which further explains why FAGCN can perform well on different types of networks. Extensive experiments on six real-world networks validate that FAGCN not only alleviates the over-smoothing problem, but also has advantages over the state-of-the-arts.

Deep neural networks (DNNs) are successful in many computer vision tasks. However, the most accurate DNNs require millions of parameters and operations, making them energy, computation and memory intensive. This impedes the deployment of large DNNs in low-power devices with limited compute resources. Recent research improves DNN models by reducing the memory requirement, energy consumption, and number of operations without significantly decreasing the accuracy. This paper surveys the progress of low-power deep learning and computer vision, specifically in regards to inference, and discusses the methods for compacting and accelerating DNN models. The techniques can be divided into four major categories: (1) parameter quantization and pruning, (2) compressed convolutional filters and matrix factorization, (3) network architecture search, and (4) knowledge distillation. We analyze the accuracy, advantages, disadvantages, and potential solutions to the problems with the techniques in each category. We also discuss new evaluation metrics as a guideline for future research.

北京阿比特科技有限公司