Multivariate spatial fields are of interest in many applications, including climate model emulation. Not only can the marginal spatial fields be subject to nonstationarity, but the dependence structure among the marginal fields and between the fields might also differ substantially. Extending a recently proposed Bayesian approach to describe the distribution of a nonstationary univariate spatial field using a triangular transport map, we cast the inference problem for a multivariate spatial field for a small number of replicates into a series of independent Gaussian process (GP) regression tasks with Gaussian errors. Due to the potential nonlinearity in the conditional means, the joint distribution modeled can be non-Gaussian. The resulting nonparametric Bayesian methodology scales well to high-dimensional spatial fields. It is especially useful when only a few training samples are available, because it employs regularization priors and quantifies uncertainty. Inference is conducted in an empirical Bayes setting by a highly scalable stochastic gradient approach. The implementation benefits from mini-batching and could be accelerated with parallel computing. We illustrate the extended transport-map model by studying hydrological variables from non-Gaussian climate-model output.
Quantum kernel methods are a candidate for quantum speed-ups in supervised machine learning. The number of quantum measurements N required for a reasonable kernel estimate is a critical resource, both from complexity considerations and because of the constraints of near-term quantum hardware. We emphasize that for classification tasks, the aim is reliable classification and not precise kernel evaluation, and demonstrate that the former is far more resource efficient. Furthermore, it is shown that the accuracy of classification is not a suitable performance metric in the presence of noise and we motivate a new metric that characterizes the reliability of classification. We then obtain a bound for N which ensures, with high probability, that classification errors over a dataset are bounded by the margin errors of an idealized quantum kernel classifier. Using chance constraint programming and the subgaussian bounds of quantum kernel distributions, we derive several Shot-frugal and Robust (ShofaR) programs starting from the primal formulation of the Support Vector Machine. This significantly reduces the number of quantum measurements needed and is robust to noise by construction. Our strategy is applicable to uncertainty in quantum kernels arising from any source of unbiased noise.
Bayesian inference for undirected graphical models is mostly restricted to the class of decomposable graphs, as they enjoy a rich set of properties making them amenable to high-dimensional problems. While parameter inference is straightforward in this setup, inferring the underlying graph is a challenge driven by the computational difficulty in exploring the space of decomposable graphs. This work makes two contributions to address this problem. First, we provide sufficient and necessary conditions for when multi-edge perturbations maintain decomposability of the graph. Using these, we characterize a simple class of partitions that efficiently classify all edge perturbations by whether they maintain decomposability. Second, we propose a novel parallel non-reversible Markov chain Monte Carlo sampler for distributions over junction tree representations of the graph. At every step, the parallel sampler executes simultaneously all edge perturbations within a partition. Through simulations, we demonstrate the efficiency of our new edge perturbation conditions and class of partitions. We find that our parallel sampler yields improved mixing properties in comparison to the single-move variate, and outperforms current state-of-the-arts methods in terms of accuracy and computational efficiency. The implementation of our work is available in the Python package parallelDG.
Over the past decade, the value and potential of VR applications in manufacturing have gained significant attention in accordance with the rise of Industry 4.0 and beyond. Its efficacy in layout planning, virtual design reviews, and operator training has been well-established in previous studies. However, many functional requirements and interaction parameters of VR for manufacturing remain ambiguously defined. One area awaiting exploration is spatial recognition and learning, crucial for understanding navigation within the virtual manufacturing system and processing spatial data. This is particularly vital in multi-user VR applications where participants' spatial awareness in the virtual realm significantly influences the efficiency of meetings and design reviews. This paper investigates the interaction parameters of multi-user VR, focusing on interactive positioning maps for virtual factory layout planning and exploring the user interaction design of digital maps as navigation aid. A literature study was conducted in order to establish frequently used technics and interactive maps from the VR gaming industry. Multiple demonstrators of different interactive maps provide a comprehensive A/B test which were implemented into a VR multi-user platform using the Unity game engine. Five different prototypes of interactive maps were tested, evaluated and graded by the 20 participants and 40 validated data streams collected. The most efficient interaction design of interactive maps is thus analyzed and discussed in the study.
Bayesian parameter inference is useful to improve Li-ion battery diagnostics and can help formulate battery aging models. However, it is computationally intensive and cannot be easily repeated for multiple cycles, multiple operating conditions, or multiple replicate cells. To reduce the computational cost of Bayesian calibration, numerical solvers for physics-based models can be replaced with faster surrogates. A physics-informed neural network (PINN) is developed as a surrogate for the pseudo-2D (P2D) battery model calibration. For the P2D surrogate, additional training regularization was needed as compared to the PINN single-particle model (SPM) developed in Part I. Both the PINN SPM and P2D surrogate models are exercised for parameter inference and compared to data obtained from a direct numerical solution of the governing equations. A parameter inference study highlights the ability to use these PINNs to calibrate scaling parameters for the cathode Li diffusion and the anode exchange current density. By realizing computational speed-ups of 2250x for the P2D model, as compared to using standard integrating methods, the PINN surrogates enable rapid state-of-health diagnostics. In the low-data availability scenario, the testing error was estimated to 2mV for the SPM surrogate and 10mV for the P2D surrogate which could be mitigated with additional data.
Large machine learning models are revolutionary technologies of artificial intelligence whose bottlenecks include huge computational expenses, power, and time used both in the pre-training and fine-tuning process. In this work, we show that fault-tolerant quantum computing could possibly provide provably efficient resolutions for generic (stochastic) gradient descent algorithms, scaling as O(T^2 polylog(n)), where n is the size of the models and T is the number of iterations in the training, as long as the models are both sufficiently dissipative and sparse, with small learning rates. Based on earlier efficient quantum algorithms for dissipative differential equations, we find and prove that similar algorithms work for (stochastic) gradient descent, the primary algorithm for machine learning. In practice, we benchmark instances of large machine learning models from 7 million to 103 million parameters. We find that, in the context of sparse training, a quantum enhancement is possible at the early stage of learning after model pruning, motivating a sparse parameter download and re-upload scheme. Our work shows solidly that fault-tolerant quantum algorithms could potentially contribute to most state-of-the-art, large-scale machine-learning problems.
Recently a nonconforming surface finite element was developed to discretize 2D vector-valued compressible flow problems in a 3D domain. In this contribution we derive an error analysis for this approach on a vector-valued Laplace problem, which is an important operator for fluid-equations on the surface. In our setup, the problem is approximated via edge-integration on local flat triangles using the nonconforming linear Crouzeix-Raviart element. The flat planes coincide with the surface at the edge midpoints. This is also the place, where the Crouzeix-Raviart element requires continuity between two neighbouring elements. The developed Crouzeix-Raviart approximation is a non-parametric approach that works on local coordinate systems, established in each triangle. This setup is numerically efficient and straightforward to implement. For this Crouzeix-Raviart discretization we derive optimal error bounds in the $H^1$-norm and $L^2$-norm and present an estimate for the geometric error. Numerical experiments validate the theoretical results.
A general asynchronous alternating iterative model is designed, for which convergence is theoretically ensured both under classical spectral radius bound and, then, for a classical class of matrix splittings for $\mathsf H$-matrices. The computational model can be thought of as a two-stage alternating iterative method, which well suits to the well-known Hermitian and skew-Hermitian splitting (HSS) approach, with the particularity here of considering only one inner iteration. Experimental parallel performance comparison is conducted between the generalized minimal residual (GMRES) algorithm, the standard HSS and our asynchronous variant, on both real and complex non-Hermitian linear systems respectively arising from convection-diffusion and structural dynamics problems. A significant gain on execution time is observed in both cases.
In recent literature, for modeling reasons, fractional differential problems have been considered equipped with anti-symmetric boundary conditions. Twenty years ago the anti-reflective boundary conditions were introduced in a context of signal processing and imaging for increasing the quality of the reconstruction of a blurred signal/image contaminated by noise and for reducing the overall complexity to that of few fast sine transforms i.e. to $O(N\log N)$ real arithmetic operations, where $N$ is the number of pixels. Here we consider the anti-symmetric boundary conditions and we introduce the anti-reflective boundary conditions in the context of nonlocal problems of fractional differential type. In the latter context, we study both types of boundary conditions, which in reality are similar in the essentials, from the perspective of computational efficiency, by considering nontruncated and truncated versions. Several numerical tests, tables, and visualizations are provided and critically discussed.
Most state-of-the-art machine learning techniques revolve around the optimisation of loss functions. Defining appropriate loss functions is therefore critical to successfully solving problems in this field. We present a survey of the most commonly used loss functions for a wide range of different applications, divided into classification, regression, ranking, sample generation and energy based modelling. Overall, we introduce 33 different loss functions and we organise them into an intuitive taxonomy. Each loss function is given a theoretical backing and we describe where it is best used. This survey aims to provide a reference of the most essential loss functions for both beginner and advanced machine learning practitioners.
In large-scale systems there are fundamental challenges when centralised techniques are used for task allocation. The number of interactions is limited by resource constraints such as on computation, storage, and network communication. We can increase scalability by implementing the system as a distributed task-allocation system, sharing tasks across many agents. However, this also increases the resource cost of communications and synchronisation, and is difficult to scale. In this paper we present four algorithms to solve these problems. The combination of these algorithms enable each agent to improve their task allocation strategy through reinforcement learning, while changing how much they explore the system in response to how optimal they believe their current strategy is, given their past experience. We focus on distributed agent systems where the agents' behaviours are constrained by resource usage limits, limiting agents to local rather than system-wide knowledge. We evaluate these algorithms in a simulated environment where agents are given a task composed of multiple subtasks that must be allocated to other agents with differing capabilities, to then carry out those tasks. We also simulate real-life system effects such as networking instability. Our solution is shown to solve the task allocation problem to 6.7% of the theoretical optimal within the system configurations considered. It provides 5x better performance recovery over no-knowledge retention approaches when system connectivity is impacted, and is tested against systems up to 100 agents with less than a 9% impact on the algorithms' performance.