亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The analysis and optimization of single intelligent reflecting surface (IRS)-assisted systems have been extensively studied, whereas little is known regarding multiple-IRS-assisted systems. This paper investigates the analysis and optimization of a double-IRS cooperatively assisted downlink system, where a multi-antenna base station (BS) serves a single-antenna user with the help of two multi-element IRSs, connected by an inter-IRS channel. The channel between any two nodes is modeled with Rician fading. The BS adopts the instantaneous CSI-adaptive maximum-ratio transmission (MRT) beamformer, and the two IRSs adopt a cooperative quasi-static phase shift design. The goal is to maximize the average achievable rate, which can be reflected by the average channel power of the equivalent channel between the BS and user, at a low phase adjustment cost and computational complexity. First, we obtain tractable expressions of the average channel power of the equivalent channel in the general Rician factor, pure line of sight (LoS), and pure non-line of sight (NLoS) regimes, respectively. Then, we jointly optimize the phase shifts of the two IRSs to maximize the average channel power of the equivalent channel in these regimes. The optimization problems are challenging non-convex problems. We obtain globally optimal closed-form solutions for some cases and propose computationally efficient iterative algorithms to obtain stationary points for the other cases. Next, we compare the computational complexity for optimizing the phase shifts and the optimal average channel power of the double-IRS cooperatively assisted system with those of a counterpart single-IRS-assisted system at a large number of reflecting elements in the three regimes. Finally, we numerically demonstrate notable gains of the proposed solutions over the existing solutions at different system parameters.

相關內容

Private information retrieval (PIR) schemes (with or without colluding servers) have been proposed for realistic coded distributed data storage systems. Star product PIR schemes with colluding servers for general coded distributed storage system were constructed over general finite fields by R. Freij-Hollanti, O. W. Gnilke, C. Hollanti and A. Karpuk in 2017. These star product PIR schemes with colluding servers are suitable for the storage of files over small fields and can be constructed for coded distributed storage system with large number of servers. In this paper for an efficient storage code, the problem to find good retrieval codes is considered. In general if the storage code is a binary Reed-Muller code the retrieval code needs not to be a binary Reed-Muller code in general. It is proved that when the storage code contains some special codewords, nonzero retrieval rate star product PIR schemes with colluding servers can only protect against small number of colluding servers. We also give examples to show that when the storage code is a good cyclic code, the best choice of the retrieval code is not cyclic in general. Therefore in the design of star product PIR schemes with colluding servers, the scheme with the storage code and the retrieval code in the same family of algebraic codes is not always efficient.

This paper studies policy optimization algorithms for multi-agent reinforcement learning. We begin by proposing an algorithm framework for two-player zero-sum Markov Games in the full-information setting, where each iteration consists of a policy update step at each state using a certain matrix game algorithm, and a value update step with a certain learning rate. This framework unifies many existing and new policy optimization algorithms. We show that the state-wise average policy of this algorithm converges to an approximate Nash equilibrium (NE) of the game, as long as the matrix game algorithms achieve low weighted regret at each state, with respect to weights determined by the speed of the value updates. Next, we show that this framework instantiated with the Optimistic Follow-The-Regularized-Leader (OFTRL) algorithm at each state (and smooth value updates) can find an $\mathcal{\widetilde{O}}(T^{-5/6})$ approximate NE in $T$ iterations, and a similar algorithm with slightly modified value update rule achieves a faster $\mathcal{\widetilde{O}}(T^{-1})$ convergence rate. These improve over the current best $\mathcal{\widetilde{O}}(T^{-1/2})$ rate of symmetric policy optimization type algorithms. We also extend this algorithm to multi-player general-sum Markov Games and show an $\mathcal{\widetilde{O}}(T^{-3/4})$ convergence rate to Coarse Correlated Equilibria (CCE). Finally, we provide a numerical example to verify our theory and investigate the importance of smooth value updates, and find that using "eager" value updates instead (equivalent to the independent natural policy gradient algorithm) may significantly slow down the convergence, even on a simple game with $H=2$ layers.

In this paper, we study a sequential decision making problem faced by e-commerce carriers related to when to send out a vehicle from the central depot to serve customer requests, and in which order to provide the service, under the assumption that the time at which parcels arrive at the depot is stochastic and dynamic. The objective is to maximize the number of parcels that can be delivered during the service hours. We propose two reinforcement learning approaches for solving this problem, one based on a policy function approximation (PFA) and the second on a value function approximation (VFA). Both methods are combined with a look-ahead strategy, in which future release dates are sampled in a Monte-Carlo fashion and a tailored batch approach is used to approximate the value of future states. Our PFA and VFA make a good use of branch-and-cut-based exact methods to improve the quality of decisions. We also establish sufficient conditions for partial characterization of optimal policy and integrate them into PFA/VFA. In an empirical study based on 720 benchmark instances, we conduct a competitive analysis using upper bounds with perfect information and we show that PFA and VFA greatly outperform two alternative myopic approaches. Overall, PFA provides best solutions, while VFA (which benefits from a two-stage stochastic optimization model) achieves a better tradeoff between solution quality and computing time.

In recent years, electricity generation has been responsible for more than a quarter of the greenhouse gas emissions in the US. Integrating a significant amount of renewables into a power grid is probably the most accessible way to reduce carbon emissions from power grids and slow down climate change. Unfortunately, the most accessible renewable power sources, such as wind and solar, are highly fluctuating and thus bring a lot of uncertainty to power grid operations and challenge existing optimization and control policies. The chance-constrained alternating current (AC) optimal power flow (OPF) framework finds the minimum cost generation dispatch maintaining the power grid operations within security limits with a prescribed probability. Unfortunately, the AC-OPF problem's chance-constrained extension is non-convex, computationally challenging, and requires knowledge of system parameters and additional assumptions on the behavior of renewable distribution. Known linear and convex approximations to the above problems, though tractable, are too conservative for operational practice and do not consider uncertainty in system parameters. This paper presents an alternative data-driven approach based on Gaussian process (GP) regression to close this gap. The GP approach learns a simple yet non-convex data-driven approximation to the AC power flow equations that can incorporate uncertainty inputs. The latter is then used to determine the solution of CC-OPF efficiently, by accounting for both input and parameter uncertainty. The practical efficiency of the proposed approach using different approximations for GP-uncertainty propagation is illustrated over numerous IEEE test cases.

This paper presents an enhanced design of multi-dimensional (MD) constellations which play a pivotal role in many communication systems such as code-domain non-orthogonal multiple access (CD-NOMA). MD constellations are attractive as their structural properties, if properly designed, lead to signal space diversity and hence improved error rate performance. Unlike the existing works which mostly focus on MD constellations with large minimum Euclidean distance (MED), we look for new MD constellations with additional feature that the minimum product distance (MPD) is also large. To this end, a non-convex optimization problem is formulated and then solved by the convex-concave procedure (CCCP). Compared with the state-of-the-art literature, our proposed MD constellations lead to significant error performance enhancement over Rayleigh fading channels whilst maintaining almost the same performance over the Gaussian channels. To demonstrate their application, we also show that these MD constellations give rise to good codebooks in sparse code multiple access systems. All the obtained MD constellations can be found in //github.com/Aureliano1/Multi-dimensional-constellation.

We study incentive designs for a class of stochastic Stackelberg games with one leader and a large number of (finite as well as infinite population of) followers. We investigate whether the leader can craft a strategy under a dynamic information structure that induces a desired behavior among the followers. For the finite population setting, under sufficient conditions, we show that there exist symmetric incentive strategies for the leader that attain approximately optimal performance from the leader's viewpoint and lead to an approximate symmetric (pure) Nash best response among the followers. Driving the follower population to infinity, we arrive at the interesting result that in this infinite-population regime the leader cannot design a smooth "finite-energy" incentive strategy, namely, a mean-field limit for such games is not well-defined. As a way around this, we introduce a class of stochastic Stackelberg games with a leader, a major follower, and a finite or infinite population of minor followers, where the leader provides an incentive only for the major follower, who in turn influences the rest of the followers through her strategy. For this class of problems, we are able to establish the existence of an incentive strategy with finitely many minor followers. We also show that if the leader's strategy with finitely many minor followers converges as their population size grows, then the limit defines an incentive strategy for the corresponding mean-field Stackelberg game. Examples of quadratic Gaussian games are provided to illustrate both positive and negative results. In addition, as a byproduct of our analysis, we establish existence of a randomized incentive strategy for the class mean-field Stackelberg games, which in turn provides an approximation for an incentive strategy of the corresponding finite population Stackelberg game.

It was observed in \citet{gupta2009differentially} that the Set Cover problem has strong impossibility results under differential privacy. In our work, we observe that these hardness results dissolve when we turn to the Partial Set Cover problem, where we only need to cover a $\rho$-fraction of the elements in the universe, for some $\rho\in(0,1)$. We show that this relaxation enables us to avoid the impossibility results: under loose conditions on the input set system, we give differentially private algorithms which output an explicit set cover with non-trivial approximation guarantees. In particular, this is the first differentially private algorithm which outputs an explicit set cover. Using our algorithm for Partial Set Cover as a subroutine, we give a differentially private (bicriteria) approximation algorithm for a facility location problem which generalizes $k$-center/$k$-supplier with outliers. Like with the Set Cover problem, no algorithm has been able to give non-trivial guarantees for $k$-center/$k$-supplier-type facility location problems due to the high sensitivity and impossibility results. Our algorithm shows that relaxing the covering requirement to serving only a $\rho$-fraction of the population, for $\rho\in(0,1)$, enables us to circumvent the inherent hardness. Overall, our work is an important step in tackling and understanding impossibility results in private combinatorial optimization.

This paper studies the design of two-wave experiments in the presence of spillover effects when the researcher aims to conduct precise inference on treatment effects. We consider units connected through a single network, local dependence among individuals, and a general class of estimands encompassing average treatment and average spillover effects. We introduce a statistical framework for designing two-wave experiments with networks, where the researcher optimizes over participants and treatment assignments to minimize the variance of the estimators of interest, using a first-wave (pilot) experiment to estimate the variance. We derive guarantees for inference on treatment effects and regret guarantees on the variance obtained from the proposed design mechanism. Our results illustrate the existence of a trade-off in the choice of the pilot study and formally characterize the pilot's size relative to the main experiment. Simulations using simulated and real-world networks illustrate the advantages of the method.

We consider the design of sublinear space and query complexity algorithms for estimating the cost of a minimum spanning tree (MST) and the cost of a minimum traveling salesman (TSP) tour in a metric on $n$ points. We first consider the $o(n)$-space regime and show that, when the input is a stream of all $\binom{n}{2}$ entries of the metric, for any $\alpha \ge 2$, both MST and TSP cost can be $\alpha$-approximated using $\tilde{O}(n/\alpha)$ space, and that $\Omega(n/\alpha^2)$ space is necessary for this task. Moreover, we show that even if the streaming algorithm is allowed $p$ passes over a metric stream, it still requires $\tilde{\Omega}(\sqrt{n/\alpha p^2})$ space. We next consider the semi-streaming regime, where computing even the exact MST cost is easy and the main challenge is to estimate TSP cost to within a factor that is strictly better than $2$. We show that, if the input is a stream of all edges of the weighted graph that induces the underlying metric, for any $\varepsilon > 0$, any one-pass $(2-\varepsilon)$-approximation of TSP cost requires $\Omega(\varepsilon^2 n^2)$ space; on the other hand, there is an $\tilde{O}(n)$ space two-pass algorithm that approximates the TSP cost to within a factor of 1.96. Finally, we consider the query complexity of estimating metric TSP cost to within a factor that is strictly better than $2$, when the algorithm is given access to a matrix that specifies pairwise distances between all points. For MST estimation in this model, it is known that a $(1+\varepsilon)$-approximation is achievable with $\tilde{O}(n/\varepsilon^{O(1)})$ queries. We design an algorithm that performs $\tilde{O}(n^{1.5})$ distance queries and achieves a strictly better than $2$-approximation when either the metric is known to contain a spanning tree supported on weight-$1$ edges or the algorithm is given access to a minimum spanning tree of the graph.

We propose a doubly robust approach to characterizing treatment effect heterogeneity in observational studies. We develop a frequentist inferential procedure that utilizes posterior distributions for both the propensity score and outcome regression models to provide valid inference on the conditional average treatment effect even when high-dimensional or nonparametric models are used. We show that our approach leads to conservative inference in finite samples or under model misspecification, and provides a consistent variance estimator when both models are correctly specified. In simulations, we illustrate the utility of these results in difficult settings such as high-dimensional covariate spaces or highly flexible models for the propensity score and outcome regression. Lastly, we analyze environmental exposure data from NHANES to identify how the effects of these exposures vary by subject-level characteristics.

北京阿比特科技有限公司