We propose the Medial Skeletal Diagram, a novel skeletal representation that tackles the prevailing issues around skeleton sparsity and reconstruction accuracy in existing skeletal representations. Our approach augments the continuous elements in the medial axis representation to effectively shift the complexity away from the discrete elements. To that end, we introduce generalized enveloping primitives, an enhancement over the standard primitives in the medial axis, which ensure efficient coverage of intricate local features of the input shape and substantially reduce the number of discrete elements required. Moreover, we present a computational framework for constructing a medial skeletal diagram from an arbitrary closed manifold mesh. Our optimization pipeline ensures that the resulting medial skeletal diagram comprehensively covers the input shape with the fewest primitives. Additionally, each optimized primitive undergoes a post-refinement process to guarantee an accurate match with the source mesh in both geometry and tessellation. We validate our approach on a comprehensive benchmark of 100 shapes, demonstrating the sparsity of the discrete elements and superior reconstruction accuracy across a variety of cases. Finally, we exemplify the versatility of our representation in downstream applications such as shape generation, mesh decomposition, shape optimization, mesh alignment, mesh compression, and user-interactive design.
Bayesian Neural Networks (BNNs) provide superior estimates of uncertainty by generating an ensemble of predictive distributions. However, inference via ensembling is resource-intensive, requiring additional entropy sources to generate stochasticity which increases resource consumption. We introduce Bayes2IMC, an in-memory computing (IMC) architecture designed for binary Bayesian neural networks that leverage nanoscale device stochasticity to generate desired distributions. Our novel approach utilizes Phase-Change Memory (PCM) to harness inherent noise characteristics, enabling the creation of a binary neural network. This design eliminates the necessity for a pre-neuron Analog-to-Digital Converter (ADC), significantly improving power and area efficiency. We also develop a hardware-software co-optimized correction method applied solely on the logits in the final layer to reduce device-induced accuracy variations across deployments on hardware. Additionally, we devise a simple compensation technique that ensures no drop in classification accuracy despite conductance drift of PCM. We validate the effectiveness of our approach on the CIFAR-10 dataset with a VGGBinaryConnect model, achieving accuracy metrics comparable to ideal software implementations as well as results reported in the literature using other technologies. Finally, we present a complete core architecture and compare its projected power, performance, and area efficiency against an equivalent SRAM baseline, showing a $3.8$ to $9.6 \times$ improvement in total efficiency (in GOPS/W/mm$^2$) and a $2.2 $ to $5.6 \times$ improvement in power efficiency (in GOPS/W). In addition, the projected hardware performance of Bayes2IMC surpasses that of most of the BNN architectures based on memristive devices reported in the literature, and achieves up to $20\%$ higher power efficiency compared to the state-of-the-art.
Visual Question Answering (VQA) research seeks to create AI systems to answer natural language questions in images, yet VQA methods often yield overly simplistic and short answers. This paper aims to advance the field by introducing Visual Question Explanation (VQE), which enhances the ability of VQA to provide detailed explanations rather than brief responses and address the need for more complex interaction with visual content. We first created an MLVQE dataset from a 14-week streamed video machine learning course, including 885 slide images, 110,407 words of transcripts, and 9,416 designed question-answer (QA) pairs. Next, we proposed a novel SparrowVQE, a small 3 billion parameters multimodal model. We trained our model with a three-stage training mechanism consisting of multimodal pre-training (slide images and transcripts feature alignment), instruction tuning (tuning the pre-trained model with transcripts and QA pairs), and domain fine-tuning (fine-tuning slide image and QA pairs). Eventually, our SparrowVQE can understand and connect visual information using the SigLIP model with transcripts using the Phi-2 language model with an MLP adapter. Experimental results demonstrate that our SparrowVQE achieves better performance in our developed MLVQE dataset and outperforms state-of-the-art methods in the other five benchmark VQA datasets. The source code is available at \url{//github.com/YoushanZhang/SparrowVQE}.
In this paper, we propose a novel LLM-Neo framework that efficiently transfers knowledge from a large language model (LLM) teacher to a compact student. Initially, we revisit the knowledge distillation (KD) and low-rank adaption (LoRA), and argue that they share the same paradigm. Inspired by this observation, we explore the strategy that combines LoRA and KD to enhance the efficiency of knowledge transfer. We first summarize some guidelines for this design and further develop the LLM-Neo. Experimental results on compressing Llama 2 and Llama 3 show that LLM-Neo outperforms various baselines. Further analysis demonstrates the robustness of the proposed LLM-Neo on variants of LoRA. The trained models have been available at \href{//huggingface.co/collections/yang31210999/llm-neo-66e3c882f5579b829ff57eba}{this repository}.
Large Language Models (LLMs) have garnered remarkable advancements across diverse code-related tasks, known as Code LLMs, particularly in code generation that generates source code with LLM from natural language descriptions. This burgeoning field has captured significant interest from both academic researchers and industry professionals due to its practical significance in software development, e.g., GitHub Copilot. Despite the active exploration of LLMs for a variety of code tasks, either from the perspective of natural language processing (NLP) or software engineering (SE) or both, there is a noticeable absence of a comprehensive and up-to-date literature review dedicated to LLM for code generation. In this survey, we aim to bridge this gap by providing a systematic literature review that serves as a valuable reference for researchers investigating the cutting-edge progress in LLMs for code generation. We introduce a taxonomy to categorize and discuss the recent developments in LLMs for code generation, covering aspects such as data curation, latest advances, performance evaluation, ethical implications, environmental impact, and real-world applications. In addition, we present a historical overview of the evolution of LLMs for code generation and offer an empirical comparison using the HumanEval, MBPP, and BigCodeBench benchmarks across various levels of difficulty and types of programming tasks to highlight the progressive enhancements in LLM capabilities for code generation. We identify critical challenges and promising opportunities regarding the gap between academia and practical development. Furthermore, we have established a dedicated resource GitHub page (//github.com/juyongjiang/CodeLLMSurvey) to continuously document and disseminate the most recent advances in the field.
This paper presents a novel hybrid Quantum Key Distribution ,QKD, protocol that combines entanglement based and non entanglement based approaches to optimize security and the number of generated keys. We introduce a dynamic system that integrates a three particle GHZ state method with the two state B92 protocol, using a quantum superposition state to probabilistically switch between them. The GHZ state component leverages strong three particle entanglement correlations for enhanced security, while the B92 component offers simplicity and potentially higher key generation rates. Implemented and simulated using Qiskit, our approach demonstrates higher number of generated keys compared to standalone protocols while maintaining robust security. We present a comprehensive analysis of the security properties and performance characteristics of the proposed protocol. The results show that this combined method effectively balances the trade offs inherent in QKD systems, offering a flexible framework adaptable to varying channel conditions and security requirements.This research contributes to ongoing efforts to make QKD more practical and efficient, potentially advancing the development of large scale, secured quantum networks.
In our demo, participants are invited to explore the Diff-MSTC prototype, which integrates the Diff-MST model into Steinberg's digital audio workstation (DAW), Cubase. Diff-MST, a deep learning model for mixing style transfer, forecasts mixing console parameters for tracks using a reference song. The system processes up to 20 raw tracks along with a reference song to predict mixing console parameters that can be used to create an initial mix. Users have the option to manually adjust these parameters further for greater control. In contrast to earlier deep learning systems that are limited to research ideas, Diff-MSTC is a first-of-its-kind prototype integrated into a DAW. This integration facilitates mixing decisions on multitracks and lets users input context through a reference song, followed by fine-tuning of audio effects in a traditional manner.
The rapid advancement of AI technologies, particularly Large Language Models (LLMs), is establishing a new paradigm for Business Intelligence (BI). Despite the emergence of pioneering work in enhancing BI systems with LLMs, we have identified the following three issues when deployed in real industrial scenarios: interaction limitations, performance bottlenecks, and functionality deficiencies. In this paper, we present SiriusBI, an end-to-end business intelligence system that is designed to address the three issues simultaneously. First, we propose an intelligent and application-oriented module called multi-round dialogue with querying, which aims to overcome the prevalent interaction limitations in current BI solutions. Next, to mitigate the performance bottlenecks caused by scenario migration, we introduce two SQL generation methods that strike a balance between accuracy and deployment costs. Finally, to tackle the practical challenges posed by functionality deficiencies, we develop an end-to-end workflow that covers the entire BI process, ensuring that SiriusBI delivers a robust and complete set of functionalities. As an independent cloud service in Tencent's data platform, SiriusBI has been applied across Tencent's finance, advertising, and cloud sectors, providing services to dozens of enterprise clients. Experiments on real-world datasets and practical applications in industrial BI scenarios demonstrate the practicality and effectiveness of SiriusBI. Remarkably, SiriusBI achieves remarkable accuracy rates of 97% in SQL generation for Tencent Finance, 89% for Tencent Advertisement, and 91% for Tencent Cloud.
Text Classification is the most essential and fundamental problem in Natural Language Processing. While numerous recent text classification models applied the sequential deep learning technique, graph neural network-based models can directly deal with complex structured text data and exploit global information. Many real text classification applications can be naturally cast into a graph, which captures words, documents, and corpus global features. In this survey, we bring the coverage of methods up to 2023, including corpus-level and document-level graph neural networks. We discuss each of these methods in detail, dealing with the graph construction mechanisms and the graph-based learning process. As well as the technological survey, we look at issues behind and future directions addressed in text classification using graph neural networks. We also cover datasets, evaluation metrics, and experiment design and present a summary of published performance on the publicly available benchmarks. Note that we present a comprehensive comparison between different techniques and identify the pros and cons of various evaluation metrics in this survey.
In this paper, we propose a novel Feature Decomposition and Reconstruction Learning (FDRL) method for effective facial expression recognition. We view the expression information as the combination of the shared information (expression similarities) across different expressions and the unique information (expression-specific variations) for each expression. More specifically, FDRL mainly consists of two crucial networks: a Feature Decomposition Network (FDN) and a Feature Reconstruction Network (FRN). In particular, FDN first decomposes the basic features extracted from a backbone network into a set of facial action-aware latent features to model expression similarities. Then, FRN captures the intra-feature and inter-feature relationships for latent features to characterize expression-specific variations, and reconstructs the expression feature. To this end, two modules including an intra-feature relation modeling module and an inter-feature relation modeling module are developed in FRN. Experimental results on both the in-the-lab databases (including CK+, MMI, and Oulu-CASIA) and the in-the-wild databases (including RAF-DB and SFEW) show that the proposed FDRL method consistently achieves higher recognition accuracy than several state-of-the-art methods. This clearly highlights the benefit of feature decomposition and reconstruction for classifying expressions.
We study the problem of learning to reason in large scale knowledge graphs (KGs). More specifically, we describe a novel reinforcement learning framework for learning multi-hop relational paths: we use a policy-based agent with continuous states based on knowledge graph embeddings, which reasons in a KG vector space by sampling the most promising relation to extend its path. In contrast to prior work, our approach includes a reward function that takes the accuracy, diversity, and efficiency into consideration. Experimentally, we show that our proposed method outperforms a path-ranking based algorithm and knowledge graph embedding methods on Freebase and Never-Ending Language Learning datasets.