亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Spanners have been shown to be a powerful tool in graph algorithms. Many spanner constructions use a certain type of clustering at their core, where each cluster has small diameter and there are relatively few spanner edges between clusters. In this paper, we provide a clustering algorithm that, given $k\geq 2$, can be used to compute a spanner of stretch $2k-1$ and expected size $O(n^{1+1/k})$ in $k$ rounds in the CONGEST model. This improves upon the state of the art (by Elkin, and Neiman [TALG'19]) by making the bounds on both running time and stretch independent of the random choices of the algorithm, whereas they only hold with high probability in previous results. Spanners are used in certain synchronizers, thus our improvement directly carries over to such synchronizers. Furthermore, for keeping the \emph{total} number of inter-cluster edges small in low diameter decompositions, our clustering algorithm provides the following guarantees. Given $\beta\in (0,1]$, we compute a low diameter decomposition with diameter bound $O\left(\frac{\log n}{\beta}\right)$ such that each edge $e\in E$ is an inter-cluster edge with probability at most $\beta\cdot w(e)$ in $O\left(\frac{\log n}{\beta}\right)$ rounds in the CONGEST model. Again, this improves upon the state of the art (by Miller, Peng, and Xu [SPAA'13]) by making the bounds on both running time and diameter independent of the random choices of the algorithm, whereas they only hold with high probability in previous results.

相關內容

For a map (function) $F(x):\ftwo^n\rightarrow\ftwo^n$ and a given $y$ in the image of $F$ the problem of \emph{local inversion} of $F$ is to find all inverse images $x$ in $\ftwo^n$ such that $y=F(x)$. In Cryptology, such a problem arises in Cryptanalysis of One way Functions (OWFs). The well known TMTO attack in Cryptanalysis is a probabilistic algorithm for computing one solution of local inversion using $O(\sqrt N)$ order computation in offline as well as online for $N=2^n$. This paper proposes a complete algorithm for solving the local inversion problem which uses linear complexity for a unique solution in a periodic orbit. The algorithm is shown to require an offline computation to solve a hard problem (possibly requiring exponential computation) and an online computation dependent on $y$ that of repeated forward evaluation $F(x)$ on points $x$ in $\ff_{2^n}$ which is polynomial time at each evaluation. However the forward evaluation is repeated at most as many number of times as the Linear Complexity of the sequence $\{y,F(y),\ldots\}$ to get one possible solution when this sequence is periodic. All other solutions are obtained in chains $\{e,F(e),\ldots\}$ for all points $e$ in the Garden of Eden (GOE) of the map $F$. Hence a solution $x$ exists iff either the former sequence is periodic or a solution occurs in a chain starting from a point in GOE. The online computation then turns out to be polynomial time $O(L^k)$ in the linear complexity $L$ of the sequence to compute one possible solution in a periodic orbit or $O(l)$ the chain length for a fixed $n$. Hence this is a complete algorithm for solving the problem of finding all rational solutions $x$ of the equation $F(x)=y$ for a given $y$ and a map $F$ in $\ff_{2^n}$.

The Extended Randomized Kaczmarz method is a well known iterative scheme which can find the Moore-Penrose inverse solution of a possibly inconsistent linear system and requires only one additional column of the system matrix in each iteration in comparison with the standard randomized Kaczmarz method. Also, the Sparse Randomized Kaczmarz method has been shown to converge linearly to a sparse solution of a consistent linear system. Here, we combine both ideas and propose an Extended Sparse Randomized Kaczmarz method. We show linear expected convergence to a sparse least squares solution in the sense that an extended variant of the regularized basis pursuit problem is solved. Moreover, we generalize the additional step in the method and prove convergence to a more abstract optimization problem. We demonstrate numerically that our method can find sparse least squares solutions of real and complex systems if the noise is concentrated in the complement of the range of the system matrix and that our generalization can handle impulsive noise.

Given a weighted graph $G=(V,E,w)$, a partition of $V$ is $\Delta$-bounded if the diameter of each cluster is bounded by $\Delta$. A distribution over $\Delta$-bounded partitions is a $\beta$-padded decomposition if every ball of radius $\gamma\Delta$ is contained in a single cluster with probability at least $e^{-\beta\cdot\gamma}$. The weak diameter of a cluster $C$ is measured w.r.t. distances in $G$, while the strong diameter is measured w.r.t. distances in the induced graph $G[C]$. The decomposition is weak/strong according to the diameter guarantee. Formerly, it was proven that $K_r$ minor free graphs admit weak decompositions with padding parameter $O(r)$, while for strong decompositions only $O(r^2)$ padding parameter was known. Furthermore, for the case of a graph $G$, for which the induced shortest path metric $d_G$ has doubling dimension $d$, a weak $O(d)$-padded decomposition was constructed, which is also known to be tight. For the case of strong diameter, nothing was known. We construct strong $O(r)$-padded decompositions for $K_r$ minor free graphs, matching the state of the art for weak decompositions. Similarly, for graphs with doubling dimension $d$ we construct a strong $O(d)$-padded decomposition, which is also tight. We use this decomposition to construct $\left(O(d),\tilde{O}(d)\right)$-sparse cover scheme for such graphs. Our new decompositions and cover have implications to approximating unique games, the construction of light and sparse spanners, and for path reporting distance oracles.

We introduce a novel method for clustering using a semidefinite programming (SDP) relaxation of the Max k-Cut problem. The approach is based on a new methodology for rounding the solution of an SDP relaxation using iterated linear optimization. We show the vertices of the Max k-Cut SDP relaxation correspond to partitions of the data into at most k sets. We also show the vertices are attractive fixed points of iterated linear optimization. Each step of this iterative procedure solves a relaxation of the closest vertex problem and leads to a new clustering problem where the underlying clusters are more clearly defined. Our experiments show that using fixed point iteration for rounding the Max k-Cut SDP relaxation leads to significantly better results when compared to randomized rounding.

We consider the dynamic pricing problem with covariates under a generalized linear demand model: a seller can dynamically adjust the price of a product over a horizon of $T$ time periods, and at each time period $t$, the demand of the product is jointly determined by the price and an observable covariate vector $x_t\in\mathbb{R}^d$ through an unknown generalized linear model. Most of the existing literature assumes the covariate vectors $x_t$'s are independently and identically distributed (i.i.d.); the few papers that relax this assumption either sacrifice model generality or yield sub-optimal regret bounds. In this paper we show that a simple pricing algorithm has an $O(d\sqrt{T}\log T)$ regret upper bound without assuming any statistical structure on the covariates $x_t$ (which can even be arbitrarily chosen). The upper bound on the regret matches the lower bound (even under the i.i.d. assumption) up to logarithmic factors. Our paper thus shows that (i) the i.i.d. assumption is not necessary for obtaining low regret, and (ii) the regret bound can be independent of the (inverse) minimum eigenvalue of the covariance matrix of the $x_t$'s, a quantity present in previous bounds. Furthermore, we discuss a condition under which a better regret is achievable and how a Thompson sampling algorithm can be applied to give an efficient computation of the prices.

We prove upper and lower bounds on the minimal spherical dispersion, improving upon previous estimates obtained by Rote and Tichy [Spherical dispersion with an application to polygonal approximation of curves, Anz. \"Osterreich. Akad. Wiss. Math.-Natur. Kl. 132 (1995), 3--10]. In particular, we see that the inverse $N(\varepsilon,d)$ of the minimal spherical dispersion is, for fixed $\varepsilon>0$, linear in the dimension $d$ of the ambient space. We also derive upper and lower bounds on the expected dispersion for points chosen independently and uniformly at random from the Euclidean unit sphere. In terms of the corresponding inverse $\widetilde{N}(\varepsilon,d)$, our bounds are optimal with respect to the dependence on $\varepsilon$.

Logistic Bandits have recently undergone careful scrutiny by virtue of their combined theoretical and practical relevance. This research effort delivered statistically efficient algorithms, improving the regret of previous strategies by exponentially large factors. Such algorithms are however strikingly costly as they require $\Omega(t)$ operations at each round. On the other hand, a different line of research focused on computational efficiency ($\mathcal{O}(1)$ per-round cost), but at the cost of letting go of the aforementioned exponential improvements. Obtaining the best of both world is unfortunately not a matter of marrying both approaches. Instead we introduce a new learning procedure for Logistic Bandits. It yields confidence sets which sufficient statistics can be easily maintained online without sacrificing statistical tightness. Combined with efficient planning mechanisms we design fast algorithms which regret performance still match the problem-dependent lower-bound of Abeille et al. (2021). To the best of our knowledge, those are the first Logistic Bandit algorithms that simultaneously enjoy statistical and computational efficiency.

Graph spanners are well-studied and widely used both in theory and practice. In a recent breakthrough, Chechik and Wulff-Nilsen [CW18] improved the state-of-the-art for light spanners by constructing a $(2k-1)(1+\epsilon)$-spanner with $O(n^{1+1/k})$ edges and $O_\epsilon(n^{1/k})$ lightness. Soon after, Filtser and Solomon [FS19] showed that the classic greedy spanner construction achieves the same bounds The major drawback of the greedy spanner is its running time of $O(mn^{1+1/k})$ (which is faster than [CW16]). This makes the construction impractical even for graphs of moderate size. Much faster spanner constructions do exist but they only achieve lightness $\Omega_\epsilon(kn^{1/k})$, even when randomization is used. The contribution of this paper is deterministic spanner constructions that are fast, and achieve similar bounds as the state-of-the-art slower constructions. Our first result is an $O_\epsilon(n^{2+1/k+\epsilon'})$ time spanner construction which achieves the state-of-the-art bounds. Our second result is an $O_\epsilon(m + n\log n)$ time construction of a spanner with $(2k-1)(1+\epsilon)$ stretch, $O(\log k\cdot n^{1+1/k})$ edges and $O_\epsilon(\log k\cdot n^{1/k})$ lightness. This is an exponential improvement in the dependence on $k$ compared to the previous result with such running time. Finally, for the important special case where $k=\log n$, for every constant $\epsilon>0$, we provide an $O(m+n^{1+\epsilon})$ time construction that produces an $O(\log n)$-spanner with $O(n)$ edges and $O(1)$ lightness which is asymptotically optimal. This is the first known sub-quadratic construction of such a spanner for any $k = \omega(1)$. To achieve our constructions, we show a novel deterministic incremental approximate distance oracle, which may be of independent interest.

We propose a new method of estimation in topic models, that is not a variation on the existing simplex finding algorithms, and that estimates the number of topics K from the observed data. We derive new finite sample minimax lower bounds for the estimation of A, as well as new upper bounds for our proposed estimator. We describe the scenarios where our estimator is minimax adaptive. Our finite sample analysis is valid for any number of documents (n), individual document length (N_i), dictionary size (p) and number of topics (K), and both p and K are allowed to increase with n, a situation not handled well by previous analyses. We complement our theoretical results with a detailed simulation study. We illustrate that the new algorithm is faster and more accurate than the current ones, although we start out with a computational and theoretical disadvantage of not knowing the correct number of topics K, while we provide the competing methods with the correct value in our simulations.

In this paper, we study the optimal convergence rate for distributed convex optimization problems in networks. We model the communication restrictions imposed by the network as a set of affine constraints and provide optimal complexity bounds for four different setups, namely: the function $F(\xb) \triangleq \sum_{i=1}^{m}f_i(\xb)$ is strongly convex and smooth, either strongly convex or smooth or just convex. Our results show that Nesterov's accelerated gradient descent on the dual problem can be executed in a distributed manner and obtains the same optimal rates as in the centralized version of the problem (up to constant or logarithmic factors) with an additional cost related to the spectral gap of the interaction matrix. Finally, we discuss some extensions to the proposed setup such as proximal friendly functions, time-varying graphs, improvement of the condition numbers.

北京阿比特科技有限公司