亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Dementia diagnosis requires a series of different testing methods, which is complex and time-consuming. Early detection of dementia is crucial as it can prevent further deterioration of the condition. This paper utilizes a speech recognition model to construct a dementia assessment system tailored for Mandarin speakers during the picture description task. By training an attention-based speech recognition model on voice data closely resembling real-world scenarios, we have significantly enhanced the model's recognition capabilities. Subsequently, we extracted the encoder from the speech recognition model and added a linear layer for dementia assessment. We collected Mandarin speech data from 99 subjects and acquired their clinical assessments from a local hospital. We achieved an accuracy of 92.04% in Alzheimer's disease detection and a mean absolute error of 9% in clinical dementia rating score prediction.

相關內容

語音識別是計算機科學和計算語言學的一個跨學科子領域,它發展了一些方法和技術,使計算機可以將口語識別和翻譯成文本。 它也被稱為自動語音識別(ASR),計算機語音識別或語音轉文本(STT)。它整合了計算機科學,語言學和計算機工程領域的知識和研究。

A multitude of (dis)similarity measures between neural network representations have been proposed, resulting in a fragmented research landscape. Most of these measures fall into one of two categories. First, measures such as linear regression, canonical correlations analysis (CCA), and shape distances, all learn explicit mappings between neural units to quantify similarity while accounting for expected invariances. Second, measures such as representational similarity analysis (RSA), centered kernel alignment (CKA), and normalized Bures similarity (NBS) all quantify similarity in summary statistics, such as stimulus-by-stimulus kernel matrices, which are already invariant to expected symmetries. Here, we take steps towards unifying these two broad categories of methods by observing that the cosine of the Riemannian shape distance (from category 1) is equal to NBS (from category 2). We explore how this connection leads to new interpretations of shape distances and NBS, and draw contrasts of these measures with CKA, a popular similarity measure in the deep learning literature.

Directed acyclic graphs represent the dependence structure among variables. When learning these graphs from data, different amounts of information may be available for different edges. Although many methods have been developed to learn the topology of these graphs, most of them do not provide a measure of uncertainty in the inference. We propose a Bayesian method, baycn (BAYesian Causal Network), to estimate the posterior probability of three states for each edge: present with one direction ($X \rightarrow Y$), present with the opposite direction ($X \leftarrow Y$), and absent. Unlike existing Bayesian methods, our method requires that the prior probabilities of these states be specified, and therefore provides a benchmark for interpreting the posterior probabilities. We develop a fast Metropolis-Hastings Markov chain Monte Carlo algorithm for the inference. Our algorithm takes as input the edges of a candidate graph, which may be the output of another graph inference method and may contain false edges. In simulation studies our method achieves high accuracy with small variation across different scenarios and is comparable or better than existing Bayesian methods. We apply baycn to genomic data to distinguish the direct and indirect targets of genetic variants.

While search is the predominant method of accessing information, formulating effective queries remains a challenging task, especially for situations where the users are not familiar with a domain, or searching for documents in other languages, or looking for complex information such as events, which are not easily expressible as queries. Providing example documents or passages of interest, might be easier for a user, however, such query-by-example scenarios are prone to concept drift, and are highly sensitive to the query generation method. This demo illustrates complementary approaches of using LLMs interactively, assisting and enabling the user to provide edits and feedback at all stages of the query formulation process. The proposed Query Generation Assistant is a novel search interface which supports automatic and interactive query generation over a mono-linguial or multi-lingual document collection. Specifically, the proposed assistive interface enables the users to refine the queries generated by different LLMs, to provide feedback on the retrieved documents or passages, and is able to incorporate the users' feedback as prompts to generate more effective queries. The proposed interface is a valuable experimental tool for exploring fine-tuning and prompting of LLMs for query generation to qualitatively evaluate the effectiveness of retrieval and ranking models, and for conducting Human-in-the-Loop (HITL) experiments for complex search tasks where users struggle to formulate queries without such assistance.

We study the problems of testing and learning high-dimensional discrete convex sets. The simplest high-dimensional discrete domain where convexity is a non-trivial property is the ternary hypercube, $\{-1,0,1\}^n$. The goal of this work is to understand structural combinatorial properties of convex sets in this domain and to determine the complexity of the testing and learning problems. We obtain the following results. Structural: We prove nearly tight bounds on the edge boundary of convex sets in $\{0,\pm 1\}^n$, showing that the maximum edge boundary of a convex set is $\widetilde \Theta(n^{3/4}) \cdot 3^n$, or equivalently that every convex set has influence $\widetilde{O}(n^{3/4})$ and a convex set exists with influence $\Omega(n^{3/4})$. Learning and sample-based testing: We prove upper and lower bounds of $3^{\widetilde{O}(n^{3/4})}$ and $3^{\Omega(\sqrt{n})}$ for the task of learning convex sets under the uniform distribution from random examples. The analysis of the learning algorithm relies on our upper bound on the influence. Both the upper and lower bound also hold for the problem of sample-based testing with two-sided error. For sample-based testing with one-sided error we show that the sample-complexity is $3^{\Theta(n)}$. Testing with queries: We prove nearly matching upper and lower bounds of $3^{\widetilde{\Theta}(\sqrt{n})}$ for one-sided error testing of convex sets with non-adaptive queries.

Medical image interpretation is central to most clinical applications such as disease diagnosis, treatment planning, and prognostication. In clinical practice, radiologists examine medical images and manually compile their findings into reports, which can be a time-consuming process. Automated approaches to radiology report generation, therefore, can reduce radiologist workload and improve efficiency in the clinical pathway. While recent deep-learning approaches for automated report generation from medical images have seen some success, most studies have relied on image-derived features alone, ignoring non-imaging patient data. Although a few studies have included the word-level contexts along with the image, the use of patient demographics is still unexplored. This paper proposes a novel multi-modal transformer network that integrates chest x-ray (CXR) images and associated patient demographic information, to synthesise patient-specific radiology reports. The proposed network uses a convolutional neural network to extract visual features from CXRs and a transformer-based encoder-decoder network that combines the visual features with semantic text embeddings of patient demographic information, to synthesise full-text radiology reports. Data from two public databases were used to train and evaluate the proposed approach. CXRs and reports were extracted from the MIMIC-CXR database and combined with corresponding patients' data MIMIC-IV. Based on the evaluation metrics used including patient demographic information was found to improve the quality of reports generated using the proposed approach, relative to a baseline network trained using CXRs alone. The proposed approach shows potential for enhancing radiology report generation by leveraging rich patient metadata and combining semantic text embeddings derived thereof, with medical image-derived visual features.

The advent of deep learning has significantly propelled the capabilities of automated medical image diagnosis, providing valuable tools and resources in the realm of healthcare and medical diagnostics. This research delves into the development and evaluation of a Deep Residual Convolutional Neural Network (CNN) for the multi-class diagnosis of chest infections, utilizing chest X-ray images. The implemented model, trained and validated on a dataset amalgamated from diverse sources, demonstrated a robust overall accuracy of 93%. However, nuanced disparities in performance across different classes, particularly Fibrosis, underscored the complexity and challenges inherent in automated medical image diagnosis. The insights derived pave the way for future research, focusing on enhancing the model's proficiency in classifying conditions that present more subtle and nuanced visual features in the images, as well as optimizing and refining the model architecture and training process. This paper provides a comprehensive exploration into the development, implementation, and evaluation of the model, offering insights and directions for future research and development in the field.

Deep-learning inverse techniques have attracted significant attention in recent years. Among them, the neural adjoint (NA) method, which employs a neural network surrogate simulator, has demonstrated impressive performance in the design tasks of artificial electromagnetic materials (AEM). However, the impact of the surrogate simulators' accuracy on the solutions in the NA method remains uncertain. Furthermore, achieving sufficient optimization becomes challenging in this method when the surrogate simulator is large, and computational resources are limited. Additionally, the behavior under constraints has not been studied, despite its importance from the engineering perspective. In this study, we investigated the impact of surrogate simulators' accuracy on the solutions and discovered that the more accurate the surrogate simulator is, the better the solutions become. We then developed an extension of the NA method, named Neural Lagrangian (NeuLag) method, capable of efficiently optimizing a sufficient number of solution candidates. We then demonstrated that the NeuLag method can find optimal solutions even when handling sufficient candidates is difficult due to the use of a large and accurate surrogate simulator. The resimulation errors of the NeuLag method were approximately 1/50 compared to previous methods for three AEM tasks. Finally, we performed optimization under constraint using NA and NeuLag, and confirmed their potential in optimization with soft or hard constraints. We believe our method holds potential in areas that require large and accurate surrogate simulators.

We propose integrating the edge-computing paradigm into the multi-robot collaborative scheduling to maximize resource utilization for complex collaborative tasks, which many robots must perform together. Examples include collaborative map-merging to produce a live global map during exploration instead of traditional approaches that schedule tasks on centralized cloud-based systems to facilitate computing. Our decentralized approach to a consensus-based scheduling strategy benefits a multi-robot-edge collaboration system by adapting to dynamic computation needs and communication-changing statistics as the system tries to optimize resources while maintaining overall performance objectives. Before collaborative task offloading, continuous device, and network profiling are performed at the computing resources, and the distributed scheduling scheme then selects the resource with maximum utility derived using a utility maximization approach. Thorough evaluations with and without edge servers on simulation and real-world multi-robot systems demonstrate that a lower task latency, a large throughput gain, and better frame rate processing may be achieved compared to the conventional edge-based systems.

Knowledge graph completion aims to predict missing relations between entities in a knowledge graph. While many different methods have been proposed, there is a lack of a unifying framework that would lead to state-of-the-art results. Here we develop PathCon, a knowledge graph completion method that harnesses four novel insights to outperform existing methods. PathCon predicts relations between a pair of entities by: (1) Considering the Relational Context of each entity by capturing the relation types adjacent to the entity and modeled through a novel edge-based message passing scheme; (2) Considering the Relational Paths capturing all paths between the two entities; And, (3) adaptively integrating the Relational Context and Relational Path through a learnable attention mechanism. Importantly, (4) in contrast to conventional node-based representations, PathCon represents context and path only using the relation types, which makes it applicable in an inductive setting. Experimental results on knowledge graph benchmarks as well as our newly proposed dataset show that PathCon outperforms state-of-the-art knowledge graph completion methods by a large margin. Finally, PathCon is able to provide interpretable explanations by identifying relations that provide the context and paths that are important for a given predicted relation.

Object detection typically assumes that training and test data are drawn from an identical distribution, which, however, does not always hold in practice. Such a distribution mismatch will lead to a significant performance drop. In this work, we aim to improve the cross-domain robustness of object detection. We tackle the domain shift on two levels: 1) the image-level shift, such as image style, illumination, etc, and 2) the instance-level shift, such as object appearance, size, etc. We build our approach based on the recent state-of-the-art Faster R-CNN model, and design two domain adaptation components, on image level and instance level, to reduce the domain discrepancy. The two domain adaptation components are based on H-divergence theory, and are implemented by learning a domain classifier in adversarial training manner. The domain classifiers on different levels are further reinforced with a consistency regularization to learn a domain-invariant region proposal network (RPN) in the Faster R-CNN model. We evaluate our newly proposed approach using multiple datasets including Cityscapes, KITTI, SIM10K, etc. The results demonstrate the effectiveness of our proposed approach for robust object detection in various domain shift scenarios.

北京阿比特科技有限公司