亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this paper, we investigate the Gaussian graphical model inference problem in a novel setting that we call erose measurements, referring to irregularly measured or observed data. For graphs, this results in different node pairs having vastly different sample sizes which frequently arises in data integration, genomics, neuroscience, and sensor networks. Existing works characterize the graph selection performance using the minimum pairwise sample size, which provides little insights for erosely measured data, and no existing inference method is applicable. We aim to fill in this gap by proposing the first inference method that characterizes the different uncertainty levels over the graph caused by the erose measurements, named GI-JOE (Graph Inference when Joint Observations are Erose). Specifically, we develop an edge-wise inference method and an affiliated FDR control procedure, where the variance of each edge depends on the sample sizes associated with corresponding neighbors. We prove statistical validity under erose measurements, thanks to careful localized edge-wise analysis and disentangling the dependencies across the graph. Finally, through simulation studies and a real neuroscience data example, we demonstrate the advantages of our inference methods for graph selection from erosely measured data.

相關內容

Blockwise missing data occurs frequently when we integrate multisource or multimodality data where different sources or modalities contain complementary information. In this paper, we consider a high-dimensional linear regression model with blockwise missing covariates and a partially observed response variable. Under this framework, we propose a computationally efficient estimator for the regression coefficient vector based on carefully constructed unbiased estimating equations and a blockwise imputation procedure, and obtain its rate of convergence. Furthermore, building upon an innovative projected estimating equation technique that intrinsically achieves bias-correction of the initial estimator, we propose a nearly unbiased estimator for each individual regression coefficient, which is asymptotically normally distributed under mild conditions. Based on these debiased estimators, asymptotically valid confidence intervals and statistical tests about each regression coefficient are constructed. Numerical studies and application analysis of the Alzheimer's Disease Neuroimaging Initiative data show that the proposed method performs better and benefits more from unsupervised samples than existing methods.

We consider a a collection of categorical random variables. Of special interest is the causal effect on an outcome variable following an intervention on another variable. Conditionally on a Directed Acyclic Graph (DAG), we assume that the joint law of the random variables can be factorized according to the DAG, where each term is a categorical distribution for the node-variable given a configuration of its parents. The graph is equipped with a causal interpretation through the notion of interventional distribution and the allied "do-calculus". From a modeling perspective, the likelihood is decomposed into a product over nodes and parents of DAG-parameters, on which a suitably specified collection of Dirichlet priors is assigned. The overall joint distribution on the ensemble of DAG-parameters is then constructed using global and local independence. We account for DAG-model uncertainty and propose a reversible jump Markov Chain Monte Carlo (MCMC) algorithm which targets the joint posterior over DAGs and DAG-parameters; from the output we are able to recover a full posterior distribution of any causal effect coefficient of interest, possibly summarized by a Bayesian Model Averaging (BMA) point estimate. We validate our method through extensive simulation studies, wherein comparisons with alternative state-of-the-art procedures reveal an outperformance in terms of estimation accuracy. Finally, we analyze a dataset relative to a study on depression and anxiety in undergraduate students.

Causal inference in spatial settings is met with unique challenges and opportunities. In spatial settings, a unit's outcome might be affected by the exposure at many locations and the confounders might be spatially structured. Using causal diagrams, we investigate the complications that arise when investigating causal relationships from spatial data. We illustrate that spatial confounding and interference can manifest as each other, meaning that investigating the presence of one can lead to wrongful conclusions in the presence of the other. We also show that statistical dependencies in the exposure can render standard analyses invalid, which can have crucial implications for understanding the effect of interventions on dependent units. Based on the conclusions from this investigation, we propose a parametric approach that simultaneously accounts for interference and mitigates bias from local and neighborhood unmeasured spatial confounding. We show that incorporating an exposure model is necessary from a Bayesian perspective. Therefore, the proposed approach is based on modeling the exposure and the outcome simultaneously while accounting for the presence of common spatially-structured unmeasured predictors. We illustrate our approach with a simulation study and with an analysis of the local and interference effects of sulfur dioxide emissions from power plants on cardiovascular mortality.

While there exists several inferential methods for analyzing functional data in factorial designs, there is a lack of statistical tests that are valid (i) in general designs, (ii) under non-restrictive assumptions on the data generating process and (iii) allow for coherent post-hoc analyses. In particular, most existing methods assume Gaussianity or equal covariance functions across groups (homoscedasticity) and are only applicable for specific study designs that do not allow for evaluation of interactions. Moreover, all available strategies are only designed for testing global hypotheses and do not directly allow a more in-depth analysis of multiple local hypotheses. To address the first two problems (i)-(ii), we propose flexible integral-type test statistics that are applicable in general factorial designs under minimal assumptions on the data generating process. In particular, we neither postulate homoscedasticity nor Gaussianity. To approximate the statistics' null distribution, we adopt a resampling approach and validate it methodologically. Finally, we use our flexible testing framework to (iii) infer several local null hypotheses simultaneously. To allow for powerful data analysis, we thereby take the complex dependencies of the different local test statistics into account. In extensive simulations we confirm that the new methods are flexibly applicable. Two illustrate data analyses complete our study. The new testing procedures are implemented in the R package multiFANOVA, which will be available on CRAN soon.

The concept of causality plays an important role in human cognition . In the past few decades, causal inference has been well developed in many fields, such as computer science, medicine, economics, and education. With the advancement of deep learning techniques, it has been increasingly used in causal inference against counterfactual data. Typically, deep causal models map the characteristics of covariates to a representation space and then design various objective optimization functions to estimate counterfactual data unbiasedly based on the different optimization methods. This paper focuses on the survey of the deep causal models, and its core contributions are as follows: 1) we provide relevant metrics under multiple treatments and continuous-dose treatment; 2) we incorporate a comprehensive overview of deep causal models from both temporal development and method classification perspectives; 3) we assist a detailed and comprehensive classification and analysis of relevant datasets and source code.

As soon as abstract mathematical computations were adapted to computation on digital computers, the problem of efficient representation, manipulation, and communication of the numerical values in those computations arose. Strongly related to the problem of numerical representation is the problem of quantization: in what manner should a set of continuous real-valued numbers be distributed over a fixed discrete set of numbers to minimize the number of bits required and also to maximize the accuracy of the attendant computations? This perennial problem of quantization is particularly relevant whenever memory and/or computational resources are severely restricted, and it has come to the forefront in recent years due to the remarkable performance of Neural Network models in computer vision, natural language processing, and related areas. Moving from floating-point representations to low-precision fixed integer values represented in four bits or less holds the potential to reduce the memory footprint and latency by a factor of 16x; and, in fact, reductions of 4x to 8x are often realized in practice in these applications. Thus, it is not surprising that quantization has emerged recently as an important and very active sub-area of research in the efficient implementation of computations associated with Neural Networks. In this article, we survey approaches to the problem of quantizing the numerical values in deep Neural Network computations, covering the advantages/disadvantages of current methods. With this survey and its organization, we hope to have presented a useful snapshot of the current research in quantization for Neural Networks and to have given an intelligent organization to ease the evaluation of future research in this area.

The accurate and interpretable prediction of future events in time-series data often requires the capturing of representative patterns (or referred to as states) underpinning the observed data. To this end, most existing studies focus on the representation and recognition of states, but ignore the changing transitional relations among them. In this paper, we present evolutionary state graph, a dynamic graph structure designed to systematically represent the evolving relations (edges) among states (nodes) along time. We conduct analysis on the dynamic graphs constructed from the time-series data and show that changes on the graph structures (e.g., edges connecting certain state nodes) can inform the occurrences of events (i.e., time-series fluctuation). Inspired by this, we propose a novel graph neural network model, Evolutionary State Graph Network (EvoNet), to encode the evolutionary state graph for accurate and interpretable time-series event prediction. Specifically, Evolutionary State Graph Network models both the node-level (state-to-state) and graph-level (segment-to-segment) propagation, and captures the node-graph (state-to-segment) interactions over time. Experimental results based on five real-world datasets show that our approach not only achieves clear improvements compared with 11 baselines, but also provides more insights towards explaining the results of event predictions.

Causal inference is a critical research topic across many domains, such as statistics, computer science, education, public policy and economics, for decades. Nowadays, estimating causal effect from observational data has become an appealing research direction owing to the large amount of available data and low budget requirement, compared with randomized controlled trials. Embraced with the rapidly developed machine learning area, various causal effect estimation methods for observational data have sprung up. In this survey, we provide a comprehensive review of causal inference methods under the potential outcome framework, one of the well known causal inference framework. The methods are divided into two categories depending on whether they require all three assumptions of the potential outcome framework or not. For each category, both the traditional statistical methods and the recent machine learning enhanced methods are discussed and compared. The plausible applications of these methods are also presented, including the applications in advertising, recommendation, medicine and so on. Moreover, the commonly used benchmark datasets as well as the open-source codes are also summarized, which facilitate researchers and practitioners to explore, evaluate and apply the causal inference methods.

How can we estimate the importance of nodes in a knowledge graph (KG)? A KG is a multi-relational graph that has proven valuable for many tasks including question answering and semantic search. In this paper, we present GENI, a method for tackling the problem of estimating node importance in KGs, which enables several downstream applications such as item recommendation and resource allocation. While a number of approaches have been developed to address this problem for general graphs, they do not fully utilize information available in KGs, or lack flexibility needed to model complex relationship between entities and their importance. To address these limitations, we explore supervised machine learning algorithms. In particular, building upon recent advancement of graph neural networks (GNNs), we develop GENI, a GNN-based method designed to deal with distinctive challenges involved with predicting node importance in KGs. Our method performs an aggregation of importance scores instead of aggregating node embeddings via predicate-aware attention mechanism and flexible centrality adjustment. In our evaluation of GENI and existing methods on predicting node importance in real-world KGs with different characteristics, GENI achieves 5-17% higher NDCG@100 than the state of the art.

Inferring missing links in knowledge graphs (KG) has attracted a lot of attention from the research community. In this paper, we tackle a practical query answering task involving predicting the relation of a given entity pair. We frame this prediction problem as an inference problem in a probabilistic graphical model and aim at resolving it from a variational inference perspective. In order to model the relation between the query entity pair, we assume that there exists an underlying latent variable (paths connecting two nodes) in the KG, which carries the equivalent semantics of their relations. However, due to the intractability of connections in large KGs, we propose to use variation inference to maximize the evidence lower bound. More specifically, our framework (\textsc{Diva}) is composed of three modules, i.e. a posterior approximator, a prior (path finder), and a likelihood (path reasoner). By using variational inference, we are able to incorporate them closely into a unified architecture and jointly optimize them to perform KG reasoning. With active interactions among these sub-modules, \textsc{Diva} is better at handling noise and coping with more complex reasoning scenarios. In order to evaluate our method, we conduct the experiment of the link prediction task on multiple datasets and achieve state-of-the-art performances on both datasets.

北京阿比特科技有限公司