亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this article, we propose an approach for federated domain adaptation, a setting where distributional shift exists among clients and some have unlabeled data. The proposed framework, FedDaDiL, tackles the resulting challenge through dictionary learning of empirical distributions. In our setting, clients' distributions represent particular domains, and FedDaDiL collectively trains a federated dictionary of empirical distributions. In particular, we build upon the Dataset Dictionary Learning framework by designing collaborative communication protocols and aggregation operations. The chosen protocols keep clients' data private, thus enhancing overall privacy compared to its centralized counterpart. We empirically demonstrate that our approach successfully generates labeled data on the target domain with extensive experiments on (i) Caltech-Office, (ii) TEP, and (iii) CWRU benchmarks. Furthermore, we compare our method to its centralized counterpart and other benchmarks in federated domain adaptation.

相關內容

稀疏表達的效果好壞和用的字典有著密切的關系。字典分兩類,一種是預先給定的分析字典,比如小波基、DCT等,另一種則是針對特定數據集學習出特定的字典。這種學出來的字典能大大提升在特定數據集的效果。

We investigate the problem of multiplex graph embedding, that is, graphs in which nodes interact through multiple types of relations (dimensions). In recent years, several methods have been developed to address this problem. However, the need for more effective and specialized approaches grows with the production of graph data with diverse characteristics. In particular, real-world multiplex graphs may exhibit a high number of dimensions, making it difficult to construct a single consensus representation. Furthermore, important information can be hidden in complex latent structures scattered in multiple dimensions. To address these issues, we propose HMGE, a novel embedding method based on hierarchical aggregation for high-dimensional multiplex graphs. Hierarchical aggregation consists of learning a hierarchical combination of the graph dimensions and refining the embeddings at each hierarchy level. Non-linear combinations are computed from previous ones, thus uncovering complex information and latent structures hidden in the multiplex graph dimensions. Moreover, we leverage mutual information maximization between local patches and global summaries to train the model without supervision. This allows to capture of globally relevant information present in diverse locations of the graph. Detailed experiments on synthetic and real-world data illustrate the suitability of our approach to downstream supervised tasks, including link prediction and node classification.

Recommendation strategies are typically evaluated by using previously logged data, employing off-policy evaluation methods to estimate their expected performance. However, for strategies that present users with slates of multiple items, the resulting combinatorial action space renders many of these methods impractical. Prior work has developed estimators that leverage the structure in slates to estimate the expected off-policy performance, but the estimation of the entire performance distribution remains elusive. Estimating the complete distribution allows for a more comprehensive evaluation of recommendation strategies, particularly along the axes of risk and fairness that employ metrics computable from the distribution. In this paper, we propose an estimator for the complete off-policy performance distribution for slates and establish conditions under which the estimator is unbiased and consistent. This builds upon prior work on off-policy evaluation for slates and off-policy distribution estimation in reinforcement learning. We validate the efficacy of our method empirically on synthetic data as well as on a slate recommendation simulator constructed from real-world data (MovieLens-20M). Our results show a significant reduction in estimation variance and improved sample efficiency over prior work across a range of slate structures.

In this paper, we aim at maximizing the weighted sum-rate (WSR) of rate splitting multiple access (RSMA) in multi-user multi-antenna transmission networks through the joint optimization of rate allocation and beamforming. Unlike conventional methods like weighted minimum mean square error (WMMSE) and standard fractional programming (FP), which tackle the non-convex WSR problem iteratively using disciplined convex subproblems and optimization toolboxes, our work pioneers a novel toolbox-free approach. For the first time, we identify the optimal beamforming structure and common rate allocation for WSR maximization in RSMA by leveraging FP and Lagrangian duality. Then we propose an algorithm based on FP and fixed point iteration to optimize the beamforming and common rate allocation without the need for optimization toolboxes. Our numerical results demonstrate that the proposed algorithm attains the same performance as standard FP and classical WMMSE methods while significantly reducing computational time.

In this paper, we consider enumeration of geodesics on a polyhedron, where a geodesic means locally-shortest path between two points. Particularly, we consider the following preprocessing problem: given a point $s$ on a polyhedral surface and a positive real number $r$, to build a data structure that enables, for any point $t$ on the surface, to enumerate all geodesics from $s$ to $t$ whose length is less than $r$. First, we present a naive algorithm by removing the trimming process from the MMP algorithm (1987). Next, we present an improved algorithm which is practically more efficient on a non-convex polyhedron, in terms of preprocessing time and memory consumption. Moreover, we introduce a single-pair geodesic graph to succinctly encode a result of geodesic query. Lastly, we compare these naive and improved algorithms by some computer experiments.

The evolution of wireless networks gravitates towards connected intelligence, a concept that envisions seamless interconnectivity among humans, objects, and intelligence in a hyper-connected cyber-physical world. Edge artificial intelligence (Edge AI) is a promising solution to achieve connected intelligence by delivering high-quality, low-latency, and privacy-preserving AI services at the network edge. This article presents a vision of autonomous edge AI systems that automatically organize, adapt, and optimize themselves to meet users' diverse requirements, leveraging the power of large language models (LLMs), i.e., Generative Pretrained Transformer (GPT). By exploiting the powerful abilities of GPT in language understanding, planning, and code generation, as well as incorporating classic wisdom such as task-oriented communication and edge federated learning, we present a versatile framework that efficiently coordinates edge AI models to cater to users' personal demands while automatically generating code to train new models in a privacy-preserving manner. Experimental results demonstrate the system's remarkable ability to accurately comprehend user demands, efficiently execute AI models with minimal cost, and effectively create high-performance AI models at edge servers.

Reducing and detecting hallucinations in large language models is an open research problem. In this project, we attempt to leverage recent advances in the field of uncertainty estimation to reduce hallucinations in frozen large language models. Epistemic neural networks have recently been proposed to improve output joint distributions for large pre-trained models. ENNs are small networks attached to large, frozen models to improve the model's joint distributions and uncertainty estimates. In this work, we train an epistemic neural network on top of the Llama-2 7B model combined with a contrastive decoding feature enhancement technique. We are the first to train an ENN for the next token prediction task and explore the efficacy of this method in reducing hallucinations on the TruthfulQA dataset. In essence, we provide a method that leverages a pre-trained model's latent embeddings to reduce hallucinations.

Motivated by the recent empirical success of incorporating public data into differentially private learning, we theoretically investigate how a shared representation learned from public data can improve private learning. We explore two common scenarios of transfer learning for linear regression, both of which assume the public and private tasks (regression vectors) share a low-rank subspace in a high-dimensional space. In the first single-task transfer scenario, the goal is to learn a single model shared across all users, each corresponding to a row in a dataset. We provide matching upper and lower bounds showing that our algorithm achieves the optimal excess risk within a natural class of algorithms that search for the linear model within the given subspace estimate. In the second scenario of multitask model personalization, we show that with sufficient public data, users can avoid private coordination, as purely local learning within the given subspace achieves the same utility. Taken together, our results help to characterize the benefits of public data across common regimes of private transfer learning.

Nowadays, we are witnessing an increasing adoption of Artificial Intelligence (AI) to develop techniques aimed at improving the reliability, effectiveness, and overall quality of software systems. Deep reinforcement learning (DRL) has recently been successfully used for automation in complex tasks such as game testing and solving the job-shop scheduling problem. However, these specialized DRL agents, trained from scratch on specific tasks, suffer from a lack of generalizability to other tasks and they need substantial time to be developed and re-trained effectively. Recently, DRL researchers have begun to develop generalist agents, able to learn a policy from various environments and capable of achieving performances similar to or better than specialist agents in new tasks. In the Natural Language Processing or Computer Vision domain, these generalist agents are showing promising adaptation capabilities to never-before-seen tasks after a light fine-tuning phase and achieving high performance. This paper investigates the potential of generalist agents for solving SE tasks. Specifically, we conduct an empirical study aimed at assessing the performance of two generalist agents on two important SE tasks: the detection of bugs in games (for two games) and the minimization of makespan in a scheduling task, to solve the job-shop scheduling problem (for two instances). Our results show that the generalist agents outperform the specialist agents with very little effort for fine-tuning, achieving a 20% reduction of the makespan over specialized agent performance on task-based scheduling. In the context of game testing, some generalist agent configurations detect 85% more bugs than the specialist agents. Building on our analysis, we provide recommendations for researchers and practitioners looking to select generalist agents for SE tasks, to ensure that they perform effectively.

Invariant approaches have been remarkably successful in tackling the problem of domain generalization, where the objective is to perform inference on data distributions different from those used in training. In our work, we investigate whether it is possible to leverage domain information from the unseen test samples themselves. We propose a domain-adaptive approach consisting of two steps: a) we first learn a discriminative domain embedding from unsupervised training examples, and b) use this domain embedding as supplementary information to build a domain-adaptive model, that takes both the input as well as its domain into account while making predictions. For unseen domains, our method simply uses few unlabelled test examples to construct the domain embedding. This enables adaptive classification on any unseen domain. Our approach achieves state-of-the-art performance on various domain generalization benchmarks. In addition, we introduce the first real-world, large-scale domain generalization benchmark, Geo-YFCC, containing 1.1M samples over 40 training, 7 validation, and 15 test domains, orders of magnitude larger than prior work. We show that the existing approaches either do not scale to this dataset or underperform compared to the simple baseline of training a model on the union of data from all training domains. In contrast, our approach achieves a significant improvement.

Recently, neural networks have been widely used in e-commerce recommender systems, owing to the rapid development of deep learning. We formalize the recommender system as a sequential recommendation problem, intending to predict the next items that the user might be interacted with. Recent works usually give an overall embedding from a user's behavior sequence. However, a unified user embedding cannot reflect the user's multiple interests during a period. In this paper, we propose a novel controllable multi-interest framework for the sequential recommendation, called ComiRec. Our multi-interest module captures multiple interests from user behavior sequences, which can be exploited for retrieving candidate items from the large-scale item pool. These items are then fed into an aggregation module to obtain the overall recommendation. The aggregation module leverages a controllable factor to balance the recommendation accuracy and diversity. We conduct experiments for the sequential recommendation on two real-world datasets, Amazon and Taobao. Experimental results demonstrate that our framework achieves significant improvements over state-of-the-art models. Our framework has also been successfully deployed on the offline Alibaba distributed cloud platform.

北京阿比特科技有限公司