亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Spurious correlations in the data, where multiple cues are predictive of the target labels, often lead to a phenomenon known as shortcut bias, where a model relies on erroneous, easy-to-learn cues while ignoring reliable ones. In this work, we propose an ensemble diversification framework exploiting Diffusion Probabilistic Models (DPMs) for shortcut bias mitigation. We show that at particular training intervals, DPMs can generate images with novel feature combinations, even when trained on samples displaying correlated input features. We leverage this crucial property to generate synthetic counterfactuals to increase model diversity via ensemble disagreement. We show that DPM-guided diversification is sufficient to remove dependence on primary shortcut cues, without a need for additional supervised signals. We further empirically quantify its efficacy on several diversification objectives, and finally show improved generalization and diversification performance on par with prior work that relies on auxiliary data collection.

相關內容

Although remote working is increasingly adopted during the pandemic, many are concerned by the low-efficiency in the remote working. Missing in text-based communication are non-verbal cues such as facial expressions and body language, which hinders the effective communication and negatively impacts the work outcomes. Prevalent on social media platforms, emojis, as alternative non-verbal cues, are gaining popularity in the virtual workspaces well. In this paper, we study how emoji usage influences developer participation and issue resolution in virtual workspaces. To this end, we collect GitHub issues for a one-year period and apply causal inference techniques to measure the causal effect of emojis on the outcome of issues, controlling for confounders such as issue content, repository, and author information. We find that emojis can significantly reduce the resolution time of issues and attract more user participation. We also compare the heterogeneous effect on different types of issues. These findings deepen our understanding of the developer communities, and they provide design implications on how to facilitate interactions and broaden developer participation.

In low latency applications and in general, for overspread channels, channel delay spread is a large percentage of the transmission frame duration. In this paper, we consider OTFS in an overspread channel exhibiting a delay spread that exceeds the block duration in a frame, where traditional channel estimation (CE) fails. We propose a two-stage CE method based on a delay-Doppler (DD) training frame, consisting of a dual chirp converted from time domain and a higher power pilot. The first stage employs a DD domain embedded pilot CE to estimate the aliased delays (due to modulo operation) and Doppler shifts, followed by identifying all the underspread paths not coinciding with any overspread path. The second stage utilizes time domain dual chirp correlation to estimate the actual delays and Doppler shifts of the remaining paths. This stage also resolves ambiguity in estimating delays and Doppler shifts for paths sharing same aliased delay. Furthermore, we present a modified low-complexity maximum ratio combining (MRC) detection algorithm for OTFS in overspread channels. Finally, we evaluate performance of OTFS using the proposed CE and the modified MRC detection in terms of normalized mean square error (NMSE) and bit error rate (BER).

Despite the recent success of deep neural networks, there remains a need for effective methods to enhance domain generalization using vision transformers. In this paper, we propose a novel domain generalization technique called Robust Representation Learning with Self-Distillation (RRLD) comprising i) intermediate-block self-distillation and ii) augmentation-guided self-distillation to improve the generalization capabilities of transformer-based models on unseen domains. This approach enables the network to learn robust and general features that are invariant to different augmentations and domain shifts while effectively mitigating overfitting to source domains. To evaluate the effectiveness of our proposed method, we perform extensive experiments on PACS and OfficeHome benchmark datasets, as well as an industrial wafer semiconductor defect dataset. The results demonstrate that RRLD achieves robust and accurate generalization performance. We observe an average accuracy improvement in the range of 1.2% to 2.3% over the state-of-the-art on the three datasets.

Despite the considerable success of Bregman proximal-type algorithms, such as mirror descent, in machine learning, a critical question remains: Can existing stationarity measures, often based on Bregman divergence, reliably distinguish between stationary and non-stationary points? In this paper, we present a groundbreaking finding: All existing stationarity measures necessarily imply the existence of spurious stationary points. We further establish an algorithmic independent hardness result: Bregman proximal-type algorithms are unable to escape from a spurious stationary point in finite steps when the initial point is unfavorable, even for convex problems. Our hardness result points out the inherent distinction between Euclidean and Bregman geometries, and introduces both fundamental theoretical and numerical challenges to both machine learning and optimization communities.

A central component of rational behavior is logical inference: the process of determining which conclusions follow from a set of premises. Psychologists have documented several ways in which humans' inferences deviate from the rules of logic. Do language models, which are trained on text generated by humans, replicate such human biases, or are they able to overcome them? Focusing on the case of syllogisms -- inferences from two simple premises -- we show that, within the PaLM2 family of transformer language models, larger models are more logical than smaller ones, and also more logical than humans. At the same time, even the largest models make systematic errors, some of which mirror human reasoning biases: they show sensitivity to the (irrelevant) ordering of the variables in the syllogism, and draw confident but incorrect inferences from particular syllogisms (syllogistic fallacies). Overall, we find that language models often mimic the human biases included in their training data, but are able to overcome them in some cases.

In the literature, the question about how to axiomatize the transitive logic of false belief is thought of as hard and left as an open problem. In this paper, among other contributions, we deal with this problem. In more details, although the standard doxastic operator is undefinable with the operator of false belief, the former is {\em almost definable} with the latter. On one hand, the involved almost definability schema guides us to find the desired core axioms for the transitive logic and the Euclidean logic of false belief. On the other hand, inspired by the schema and other considerations, we propose a suitable canonical relation, which can uniformly handle the completeness proof of various logics of false belief, including the transitive logic. We also extend the results to the logic of radical ignorance, due to the interdefinability of the operators of false belief and radical ignorance.

How to decode human vision through neural signals has attracted a long-standing interest in neuroscience and machine learning. Modern contrastive learning and generative models improved the performance of fMRI-based visual decoding and reconstruction. However, the high cost and low temporal resolution of fMRI limit their applications in brain-computer interfaces (BCIs), prompting a high need for EEG-based visual reconstruction. In this study, we present an EEG-based visual reconstruction framework. It consists of a plug-and-play EEG encoder called the Adaptive Thinking Mapper (ATM), which is aligned with image embeddings, and a two-stage EEG guidance image generator that first transforms EEG features into image priors and then reconstructs the visual stimuli with a pre-trained image generator. Our approach allows EEG embeddings to achieve superior performance in image classification and retrieval tasks. Our two-stage image generation strategy vividly reconstructs images seen by humans. Furthermore, we analyzed the impact of signals from different time windows and brain regions on decoding and reconstruction. The versatility of our framework is demonstrated in the magnetoencephalogram (MEG) data modality. We report that EEG-based visual decoding achieves SOTA performance, highlighting the portability, low cost, and high temporal resolution of EEG, enabling a wide range of BCI applications. The code of ATM is available at //github.com/dongyangli-del/EEG_Image_decode.

We present a study of surrogate losses and algorithms for the general problem of learning to defer with multiple experts. We first introduce a new family of surrogate losses specifically tailored for the multiple-expert setting, where the prediction and deferral functions are learned simultaneously. We then prove that these surrogate losses benefit from strong $H$-consistency bounds. We illustrate the application of our analysis through several examples of practical surrogate losses, for which we give explicit guarantees. These loss functions readily lead to the design of new learning to defer algorithms based on their minimization. While the main focus of this work is a theoretical analysis, we also report the results of several experiments on SVHN and CIFAR-10 datasets.

Judgment aggregation is a framework to aggregate individual opinions on multiple, logically connected issues into a collective outcome. These opinions are cast by judges, which can be for example referees, experts, advisors or jurors, depending on the application and context. It is open to manipulative attacks such as \textsc{Manipulation} where judges cast their judgments strategically. Previous works have shown that most computational problems corresponding to these manipulative attacks are \NP-hard. This desired computational barrier, however, often relies on formulas that are either of unbounded size or of complex structure. We revisit the computational complexity for various \textsc{Manipulation} and \textsc{Bribery} problems in premise-based judgment aggregation, now focusing on simple and realistic formulas. We restrict all formulas to be clauses that are (positive) monotone, Horn-clauses, or have bounded length. For basic variants of \textsc{Manipulation}, we show that these restrictions make several variants, which were in general known to be \NP-hard, polynomial-time solvable. Moreover, we provide a P vs.\ NP dichotomy for a large class of clause restrictions (generalizing monotone and Horn clauses) by showing a close relationship between variants of \textsc{Manipulation} and variants of \textsc{Satisfiability}. For Hamming distance based \textsc{Manipulation}, we show that \NP-hardness even holds for positive monotone clauses of length three, but the problem becomes polynomial-time solvable for positive monotone clauses of length two. For \textsc{Bribery}, we show that \NP-hardness even holds for positive monotone clauses of length two, but it becomes polynomial-time solvable for the same clause set if there is a constant budget.

We examine the problem of question answering over knowledge graphs, focusing on simple questions that can be answered by the lookup of a single fact. Adopting a straightforward decomposition of the problem into entity detection, entity linking, relation prediction, and evidence combination, we explore simple yet strong baselines. On the popular SimpleQuestions dataset, we find that basic LSTMs and GRUs plus a few heuristics yield accuracies that approach the state of the art, and techniques that do not use neural networks also perform reasonably well. These results show that gains from sophisticated deep learning techniques proposed in the literature are quite modest and that some previous models exhibit unnecessary complexity.

北京阿比特科技有限公司