亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Let $S_{p,n}$ denote the sample covariance matrix based on $n$ independent identically distributed $p$-dimensional random vectors in the null-case. The main result of this paper is an explicit expansion of trace moments and power-trace covariances of $S_{p,n}$ simultaneously for both high- and low-dimensional data. To this end we expand a well-known ansatz of describing trace moments as weighted sums over routes or graphs. The novelty to our approach is an inherent coloring of the examined graphs and a decomposition of graphs into their tree-structure and their \textit{seed graphs}, which allows for some elegant formulas explaining the effect of the tree structures on the number of Euler-tours. The weighted sums over graphs become weighted sums over the possible seed graphs, which in turn are much easier to analyze.

相關內容

The Weisfeiler-Leman (WL) dimension of a graph parameter $f$ is the minimum $k$ such that, if $G_1$ and $G_2$ are indistinguishable by the $k$-dimensional WL-algorithm then $f(G_1)=f(G_2)$. The WL-dimension of $f$ is $\infty$ if no such $k$ exists. We study the WL-dimension of graph parameters characterised by the number of answers from a fixed conjunctive query to the graph. Given a conjunctive query $\varphi$, we quantify the WL-dimension of the function that maps every graph $G$ to the number of answers of $\varphi$ in $G$. The works of Dvor\'ak (J. Graph Theory 2010), Dell, Grohe, and Rattan (ICALP 2018), and Neuen (ArXiv 2023) have answered this question for full conjunctive queries, which are conjunctive queries without existentially quantified variables. For such queries $\varphi$, the WL-dimension is equal to the treewidth of the Gaifman graph of $\varphi$. In this work, we give a characterisation that applies to all conjunctive qureies. Given any conjunctive query $\varphi$, we prove that its WL-dimension is equal to the semantic extension width $\mathsf{sew}(\varphi)$, a novel width measure that can be thought of as a combination of the treewidth of $\varphi$ and its quantified star size, an invariant introduced by Durand and Mengel (ICDT 2013) describing how the existentially quantified variables of $\varphi$ are connected with the free variables. Using the recently established equivalence between the WL-algorithm and higher-order Graph Neural Networks (GNNs) due to Morris et al. (AAAI 2019), we obtain as a consequence that the function counting answers to a conjunctive query $\varphi$ cannot be computed by GNNs of order smaller than $\mathsf{sew}(\varphi)$.

In the theory of lossy compression, the rate-distortion (R-D) function $R(D)$ describes how much a data source can be compressed (in bit-rate) at any given level of fidelity (distortion). Obtaining $R(D)$ for a given data source establishes the fundamental performance limit for all compression algorithms. We propose a new method to estimate $R(D)$ from the perspective of optimal transport. Unlike the classic Blahut--Arimoto algorithm which fixes the support of the reproduction distribution in advance, our Wasserstein gradient descent algorithm learns the support of the optimal reproduction distribution by moving particles. We prove its local convergence and analyze the sample complexity of our R-D estimator based on a connection to entropic optimal transport. Experimentally, we obtain comparable or tighter bounds than state-of-the-art neural network methods on low-rate sources while requiring considerably less tuning and computation effort. We also highlight a connection to maximum-likelihood deconvolution and introduce a new class of sources that can be used as test cases with known solutions to the R-D problem.

We present a structure-preserving Eulerian algorithm for solving $L^2$-gradient flows and a structure-preserving Lagrangian algorithm for solving generalized diffusions. Both algorithms employ neural networks as tools for spatial discretization. Unlike most existing methods that construct numerical discretizations based on the strong or weak form of the underlying PDE, the proposed schemes are constructed based on the energy-dissipation law directly. This guarantees the monotonic decay of the system's energy, which avoids unphysical states of solutions and is crucial for the long-term stability of numerical computations. To address challenges arising from nonlinear neural-network discretization, we first perform temporal discretization on these variational systems. This approach is computationally memory-efficient when implementing neural network-based algorithms. The proposed neural-network-based schemes are mesh-free, allowing us to solve gradient flows in high dimensions. Various numerical experiments are presented to demonstrate the accuracy and energy stability of the proposed numerical schemes.

We consider maximizing a monotonic, submodular set function $f: 2^{[n]} \rightarrow [0,1]$ under stochastic bandit feedback. Specifically, $f$ is unknown to the learner but at each time $t=1,\dots,T$ the learner chooses a set $S_t \subset [n]$ with $|S_t| \leq k$ and receives reward $f(S_t) + \eta_t$ where $\eta_t$ is mean-zero sub-Gaussian noise. The objective is to minimize the learner's regret over $T$ times with respect to ($1-e^{-1}$)-approximation of maximum $f(S_*)$ with $|S_*| = k$, obtained through greedy maximization of $f$. To date, the best regret bound in the literature scales as $k n^{1/3} T^{2/3}$. And by trivially treating every set as a unique arm one deduces that $\sqrt{ {n \choose k} T }$ is also achievable. In this work, we establish the first minimax lower bound for this setting that scales like $\mathcal{O}(\min_{i \le k}(in^{1/3}T^{2/3} + \sqrt{n^{k-i}T}))$. Moreover, we propose an algorithm that is capable of matching the lower bound regret.

Recently, Arjevani et al. [1] established a lower bound of iteration complexity for the first-order optimization under an $L$-smooth condition and a bounded noise variance assumption. However, a thorough review of existing literature on Adam's convergence reveals a noticeable gap: none of them meet the above lower bound. In this paper, we close the gap by deriving a new convergence guarantee of Adam, with only an $L$-smooth condition and a bounded noise variance assumption. Our results remain valid across a broad spectrum of hyperparameters. Especially with properly chosen hyperparameters, we derive an upper bound of the iteration complexity of Adam and show that it meets the lower bound for first-order optimizers. To the best of our knowledge, this is the first to establish such a tight upper bound for Adam's convergence. Our proof utilizes novel techniques to handle the entanglement between momentum and adaptive learning rate and to convert the first-order term in the Descent Lemma to the gradient norm, which may be of independent interest.

The modular subset sum problem consists of deciding, given a modulus $m$, a multiset $S$ of $n$ integers in $0..m-1$, and a target integer $t$, whether there exists a subset of $S$ with elements summing to $t \mod m $, and to report such a set if it exists. We give a simple $O(m \log m)$-time with high probability (w.h.p.) algorithm for the modular subset sum problem. This builds on and improves on a previous $O(m \log^7 m)$ w.h.p. algorithm from Axiotis, Backurs, Jin, Tzamos, and Wu (SODA 19). Our method utilizes the ADT of the dynamic strings structure of Gawrychowski et al. (SODA~18). However, as this structure is rather complicated we present a much simpler alternative which we call the Data Dependent Tree. As an application, we consider the computational version of a fundamental theorem in zero-sum Ramsey theory. The Erd\H{o}s-Ginzburg-Ziv Theorem states that a multiset of $2n - 1$ integers always contains a subset of cardinality exactly $n$ whose values sum to a multiple of $n$. We give an algorithm for finding such a subset in time $O(n \log n)$ w.h.p. which improves on an $O(n^2)$ algorithm due to Del Lungo, Marini, and Mori (Disc. Math. 09).

We study the problem of $\textit{vector set search}$ with $\textit{vector set queries}$. This task is analogous to traditional near-neighbor search, with the exception that both the query and each element in the collection are $\textit{sets}$ of vectors. We identify this problem as a core subroutine for semantic search applications and find that existing solutions are unacceptably slow. Towards this end, we present a new approximate search algorithm, DESSERT (${\bf D}$ESSERT ${\bf E}$ffeciently ${\bf S}$earches ${\bf S}$ets of ${\bf E}$mbeddings via ${\bf R}$etrieval ${\bf T}$ables). DESSERT is a general tool with strong theoretical guarantees and excellent empirical performance. When we integrate DESSERT into ColBERT, a state-of-the-art semantic search model, we find a 2-5x speedup on the MS MARCO and LoTTE retrieval benchmarks with minimal loss in recall, underscoring the effectiveness and practical applicability of our proposal.

The persistent homology transform (PHT) represents a shape with a multiset of persistence diagrams parameterized by the sphere of directions in the ambient space. In this work, we describe a finite set of diagrams that discretize the PHT such that it faithfully represents the underlying shape. We provide a discretization that is exponential in the dimension of the shape. Moreover, we show that this discretization is stable with respect to various perturbations. Furthermore, we provide an algorithm for computing the discretization. Our approach relies only on knowing the heights and dimensions of topological events, which means that it can be adapted to provide discretizations of other dimension-returning topological transforms, including the Betti curve transform. With mild alterations, we also adapt our methods to faithfully discretize the Euler Characteristic curve transform.

We study the sensitivity of infinite-dimensional Bayesian linear inverse problems governed by partial differential equations (PDEs) with respect to modeling uncertainties. In particular, we consider derivative-based sensitivity analysis of the information gain, as measured by the Kullback-Leibler divergence from the posterior to the prior distribution. To facilitate this, we develop a fast and accurate method for computing derivatives of the information gain with respect to auxiliary model parameters. Our approach combines low-rank approximations, adjoint-based eigenvalue sensitivity analysis, and post-optimal sensitivity analysis. The proposed approach also paves way for global sensitivity analysis by computing derivative-based global sensitivity measures. We illustrate different aspects of the proposed approach using an inverse problem governed by a scalar linear elliptic PDE, and an inverse problem governed by the three-dimensional equations of linear elasticity, which is motivated by the inversion of the fault-slip field after an earthquake.

Object detection typically assumes that training and test data are drawn from an identical distribution, which, however, does not always hold in practice. Such a distribution mismatch will lead to a significant performance drop. In this work, we aim to improve the cross-domain robustness of object detection. We tackle the domain shift on two levels: 1) the image-level shift, such as image style, illumination, etc, and 2) the instance-level shift, such as object appearance, size, etc. We build our approach based on the recent state-of-the-art Faster R-CNN model, and design two domain adaptation components, on image level and instance level, to reduce the domain discrepancy. The two domain adaptation components are based on H-divergence theory, and are implemented by learning a domain classifier in adversarial training manner. The domain classifiers on different levels are further reinforced with a consistency regularization to learn a domain-invariant region proposal network (RPN) in the Faster R-CNN model. We evaluate our newly proposed approach using multiple datasets including Cityscapes, KITTI, SIM10K, etc. The results demonstrate the effectiveness of our proposed approach for robust object detection in various domain shift scenarios.

北京阿比特科技有限公司