This paper reports on the design and results of the 2024 ICASSP SP Cadenza Challenge: Music Demixing/Remixing for Hearing Aids. The Cadenza project is working to enhance the audio quality of music for those with a hearing loss. The scenario for the challenge was listening to stereo reproduction over loudspeakers via hearing aids. The task was to: decompose pop/rock music into vocal, drums, bass and other (VDBO); rebalance the different tracks with specified gains and then remixing back to stereo. End-to-end approaches were also accepted. 17 systems were submitted by 11 teams. Causal systems performed poorer than non-causal approaches. 9 systems beat the baseline. A common approach was to fine-tuning pretrained demixing models. The best approach used an ensemble of models.
This paper presents a trade study analysis to design and evaluate the perception system architecture for ReachBot. ReachBot is a novel robotic concept that uses grippers at the end of deployable booms for navigation of rough terrain such as walls of caves and lava tubes. Previous studies on ReachBot have discussed the overall robot design, placement and number of deployable booms, and gripper mechanism design; however, analysis of the perception and sensing system remains underdeveloped. Because ReachBot can extend and interact with terrain over long distances on the order of several meters, a robust perception and sensing strategy is crucial to identify grasping locations and enable fully autonomous operation. This trade study focuses on developing the perception trade space and realizing such perception capabilities for a physical prototype. This work includes analysis of: (1) multiple-range sensing strategies for ReachBot, (2) sensor technologies for subsurface climbing robotics, (3) criteria for sensor evaluation, (4) positions and modalities of sensors on ReachBot, and (5) map representations of grasping locations. From our analysis, we identify the overall perception strategy and hardware configuration for a fully-instrumented case study mission to a Martian lava tube, and identify specific sensors for a hardware prototype. The final result of our trade study is a system design conducive to benchtop testing and prototype hardware development.
Action Quality Assessment (AQA) evaluates diverse skills but models struggle with non-stationary data. We propose Continual AQA (CAQA) to refine models using sparse new data. Feature replay preserves memory without storing raw inputs. However, the misalignment between static old features and the dynamically changing feature manifold causes severe catastrophic forgetting. To address this novel problem, we propose Manifold-Aligned Graph Regularization (MAGR), which first aligns deviated old features to the current feature manifold, ensuring representation consistency. It then constructs a graph jointly arranging old and new features aligned with quality scores. Experiments show MAGR outperforms recent strong baselines with up to 6.56%, 5.66%, 15.64%, and 9.05% correlation gains on the MTL-AQA, FineDiving, UNLV-Dive, and JDM-MSA split datasets, respectively. This validates MAGR for continual assessment challenges arising from non-stationary skill variations.
This paper investigates the application of eXplainable Artificial Intelligence (XAI) in the design of embedded systems using machine learning (ML). As a case study, it addresses the challenging problem of static silent store prediction. This involves identifying redundant memory writes based only on static program features. Eliminating such stores enhances performance and energy efficiency by reducing memory access and bus traffic, especially in the presence of emerging non-volatile memory technologies. To achieve this, we propose a methodology consisting of: 1) the development of relevant ML models for explaining silent store prediction, and 2) the application of XAI to explain these models. We employ two state-of-the-art model-agnostic XAI methods to analyze the causes of silent stores. Through the case study, we evaluate the effectiveness of the methods. We find that these methods provide explanations for silent store predictions, which are consistent with known causes of silent store occurrences from previous studies. Typically, this allows us to confirm the prevalence of silent stores in operations that write the zero constant into memory, or the absence of silent stores in operations involving loop induction variables. This suggests the potential relevance of XAI in analyzing ML models' decision in embedded system design. From the case study, we share some valuable insights and pitfalls we encountered. More generally, this study aims to lay the groundwork for future research in the emerging field of XAI for embedded system design.
With the requirements of Intelligent Transport Systems (ITSs) for extensive connectivity of Electronic Control Units (ECUs) to the outside world, safety and security have become stringent problems. Intrusion detection systems (IDSs) are a crucial safety component in remediating Controller Area Network (CAN) bus vulnerabilities. However, supervised-based IDSs fail to identify complexity attacks and anomaly-based IDSs have higher false alarms owing to capability bottleneck. In this paper, we propose a novel multi-knowledge fused anomaly detection model, called MKF-IDS. Specifically, the method designs an integration framework, including spatial-temporal correlation with an attention mechanism (STcAM) module and patch sparse-transformer module (PatchST). The STcAM with fine-pruning uses one-dimensional convolution (Conv1D) to extract spatial features and subsequently utilizes the Bidirectional Long Short Term Memory (Bi-LSTM) to extract the temporal features, where the attention mechanism will focus on the important time steps. Meanwhile, the PatchST captures the combined long-time historical features from independent univariate time series. Finally, the proposed method is based on knowledge distillation to STcAM as a student model for learning intrinsic knowledge and cross the ability to mimic PatchST. In the detection phase, the MKF-ADS only deploys STcAM to maintain efficiency in a resource-limited IVN environment. Moreover, the redundant noisy signal is reduced with bit flip rate and boundary decision estimation. We conduct extensive experiments on six simulation attack scenarios across various CAN IDs and time steps, and two real attack scenarios, which present a competitive prediction and detection performance. Compared with the baseline in the same paradigm, the error rate and FAR are 2.62% and 2.41% and achieve a promising F1-score of 97.3%.
This paper presents ShapeLLM, the first 3D Multimodal Large Language Model (LLM) designed for embodied interaction, exploring a universal 3D object understanding with 3D point clouds and languages. ShapeLLM is built upon an improved 3D encoder by extending ReCon to ReCon++ that benefits from multi-view image distillation for enhanced geometry understanding. By utilizing ReCon++ as the 3D point cloud input encoder for LLMs, ShapeLLM is trained on constructed instruction-following data and tested on our newly human-curated evaluation benchmark, 3D MM-Vet. ReCon++ and ShapeLLM achieve state-of-the-art performance in 3D geometry understanding and language-unified 3D interaction tasks, such as embodied visual grounding.
In this paper, we introduce I3DE (Inconsistency Inspecting IDE) - an IDE plugin to inspect inconsistencies in PL/SQL code. We first observed the potential issues, e.g., misuses or bugs, that are introduced by the inconsistent understanding of PL/SQL semantics by PL/SQL programmers and DBMS developers, and propose a metamorphic testing-based approach for inspecting such inconsistencies in PL/SQL code. We design and implement our approach in I3DE, a widely usable plugin for the IntelliJ Platform. We conducted a comparative user study involving 16 participants, and the findings indicate that I3DE is consistently effective and efficient in helping programmers identify and avoid inconsistencies across different programming difficulties
Data plays a fundamental role in the training of Large Language Models (LLMs). Effective data management, particularly in the formulation of a well-suited training dataset, holds significance for enhancing model performance and improving training efficiency during pretraining and supervised fine-tuning phases. Despite the considerable importance of data management, the current research community still falls short in providing a systematic analysis of the rationale behind management strategy selection, its consequential effects, methodologies for evaluating curated datasets, and the ongoing pursuit of improved strategies. Consequently, the exploration of data management has attracted more and more attention among the research community. This survey provides a comprehensive overview of current research in data management within both the pretraining and supervised fine-tuning stages of LLMs, covering various noteworthy aspects of data management strategy design: data quantity, data quality, domain/task composition, etc. Looking toward the future, we extrapolate existing challenges and outline promising directions for development in this field. Therefore, this survey serves as a guiding resource for practitioners aspiring to construct powerful LLMs through effective data management practices. The collection of the latest papers is available at //github.com/ZigeW/data_management_LLM.
This paper surveys the field of transfer learning in the problem setting of Reinforcement Learning (RL). RL has been the key solution to sequential decision-making problems. Along with the fast advance of RL in various domains. including robotics and game-playing, transfer learning arises as an important technique to assist RL by leveraging and transferring external expertise to boost the learning process. In this survey, we review the central issues of transfer learning in the RL domain, providing a systematic categorization of its state-of-the-art techniques. We analyze their goals, methodologies, applications, and the RL frameworks under which these transfer learning techniques would be approachable. We discuss the relationship between transfer learning and other relevant topics from an RL perspective and also explore the potential challenges as well as future development directions for transfer learning in RL.
Generative Adversarial Networks (GANs) have recently achieved impressive results for many real-world applications, and many GAN variants have emerged with improvements in sample quality and training stability. However, they have not been well visualized or understood. How does a GAN represent our visual world internally? What causes the artifacts in GAN results? How do architectural choices affect GAN learning? Answering such questions could enable us to develop new insights and better models. In this work, we present an analytic framework to visualize and understand GANs at the unit-, object-, and scene-level. We first identify a group of interpretable units that are closely related to object concepts using a segmentation-based network dissection method. Then, we quantify the causal effect of interpretable units by measuring the ability of interventions to control objects in the output. We examine the contextual relationship between these units and their surroundings by inserting the discovered object concepts into new images. We show several practical applications enabled by our framework, from comparing internal representations across different layers, models, and datasets, to improving GANs by locating and removing artifact-causing units, to interactively manipulating objects in a scene. We provide open source interpretation tools to help researchers and practitioners better understand their GAN models.
In this paper we address issues with image retrieval benchmarking on standard and popular Oxford 5k and Paris 6k datasets. In particular, annotation errors, the size of the dataset, and the level of challenge are addressed: new annotation for both datasets is created with an extra attention to the reliability of the ground truth. Three new protocols of varying difficulty are introduced. The protocols allow fair comparison between different methods, including those using a dataset pre-processing stage. For each dataset, 15 new challenging queries are introduced. Finally, a new set of 1M hard, semi-automatically cleaned distractors is selected. An extensive comparison of the state-of-the-art methods is performed on the new benchmark. Different types of methods are evaluated, ranging from local-feature-based to modern CNN based methods. The best results are achieved by taking the best of the two worlds. Most importantly, image retrieval appears far from being solved.