亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This text presents an introduction to an emerging paradigm in control of dynamical systems and differentiable reinforcement learning called online nonstochastic control. The new approach applies techniques from online convex optimization and convex relaxations to obtain new methods with provable guarantees for classical settings in optimal and robust control. The primary distinction between online nonstochastic control and other frameworks is the objective. In optimal control, robust control, and other control methodologies that assume stochastic noise, the goal is to perform comparably to an offline optimal strategy. In online nonstochastic control, both the cost functions as well as the perturbations from the assumed dynamical model are chosen by an adversary. Thus the optimal policy is not defined a priori. Rather, the target is to attain low regret against the best policy in hindsight from a benchmark class of policies. This objective suggests the use of the decision making framework of online convex optimization as an algorithmic methodology. The resulting methods are based on iterative mathematical optimization algorithms, and are accompanied by finite-time regret and computational complexity guarantees.

相關內容

The infinite horizon setting is widely adopted for problems of reinforcement learning (RL). These invariably result in stationary policies that are optimal. In many situations, finite horizon control problems are of interest and for such problems, the optimal policies are time-varying in general. Another setting that has become popular in recent times is of Constrained Reinforcement Learning, where the agent maximizes its rewards while it also aims to satisfy some given constraint criteria. However, this setting has only been studied in the context of infinite horizon MDPs where stationary policies are optimal. We present an algorithm for constrained RL in the Finite Horizon Setting where the horizon terminates after a fixed (finite) time. We use function approximation in our algorithm which is essential when the state and action spaces are large or continuous and use the policy gradient method to find the optimal policy. The optimal policy that we obtain depends on the stage and so is non-stationary in general. To the best of our knowledge, our paper presents the first policy gradient algorithm for the finite horizon setting with constraints. We show the convergence of our algorithm to a constrained optimal policy. We also compare and analyze the performance of our algorithm through experiments and show that our algorithm performs better than some other well known algorithms.

The identification of choice models is crucial for understanding consumer behavior, designing marketing policies, and developing new products. The identification of parametric choice-based demand models, such as the multinomial choice model (MNL), is typically straightforward. However, nonparametric models, which are highly effective and flexible in explaining customer choices, may encounter the curse of the dimensionality and lose their identifiability. For example, the ranking-based model, which is a nonparametric model and designed to mirror the random utility maximization (RUM) principle, is known to be nonidentifiable from the collection of choice probabilities alone. In this paper, we develop a new class of nonparametric models that is not subject to the problem of nonidentifiability. Our model assumes bounded rationality of consumers, which results in symmetric demand cannibalization and intriguingly enables full identification. That is to say, we can uniquely construct the model based on its observed choice probabilities over assortments. We further propose an efficient estimation framework using a combination of column generation and expectation-maximization algorithms. Using a real-world data, we show that our choice model demonstrates competitive prediction accuracy compared to the state-of-the-art benchmarks, despite incorporating the assumption of bounded rationality which could, in theory, limit the representation power of our model.

This paper introduces a dual-based algorithm framework for solving the regularized online resource allocation problems, which have potentially non-concave cumulative rewards, hard resource constraints, and a non-separable regularizer. Under a strategy of adaptively updating the resource constraints, the proposed framework only requests approximate solutions to the empirical dual problems up to a certain accuracy and yet delivers an optimal logarithmic regret under a locally second-order growth condition. Surprisingly, a delicate analysis of the dual objective function enables us to eliminate the notorious log-log factor in regret bound. The flexible framework renders renowned and computationally fast algorithms immediately applicable, e.g., dual stochastic gradient descent. Additionally, an infrequent re-solving scheme is proposed, which significantly reduces computational demands without compromising the optimal regret performance. A worst-case square-root regret lower bound is established if the resource constraints are not adaptively updated during dual optimization, which underscores the critical role of adaptive dual variable update. Comprehensive numerical experiments demonstrate the merits of the proposed algorithm framework.

Stable gait generation is a crucial problem for legged robot locomotion as this impacts other critical performance factors such as, e.g. mobility over an uneven terrain and power consumption. Gait generation stability results from the efficient control of the interaction between the legged robot's body and the environment where it moves. Here, we study how this can be achieved by a combination of model-predictive and predictive reinforcement learning controllers. Model-predictive control (MPC) is a well-established method that does not utilize any online learning (except for some adaptive variations) as it provides a convenient interface for state constraints management. Reinforcement learning (RL), in contrast, relies on adaptation based on pure experience. In its bare-bone variants, RL is not always suitable for robots due to their high complexity and expensive simulation/experimentation. In this work, we combine both control methods to address the quadrupedal robot stable gate generation problem. The hybrid approach that we develop and apply uses a cost roll-out algorithm with a tail cost in the form of a Q-function modeled by a neural network; this allows to alleviate the computational complexity, which grows exponentially with the prediction horizon in a purely MPC approach. We demonstrate that our RL gait controller achieves stable locomotion at short horizons, where a nominal MP controller fails. Further, our controller is capable of live operation, meaning that it does not require previous training. Our results suggest that the hybridization of MPC with RL, as presented here, is beneficial to achieve a good balance between online control capabilities and computational complexity.

We present APAC-Net, an alternating population and agent control neural network for solving stochastic mean field games (MFGs). Our algorithm is geared toward high-dimensional instances of MFGs that are beyond reach with existing solution methods. We achieve this in two steps. First, we take advantage of the underlying variational primal-dual structure that MFGs exhibit and phrase it as a convex-concave saddle point problem. Second, we parameterize the value and density functions by two neural networks, respectively. By phrasing the problem in this manner, solving the MFG can be interpreted as a special case of training a generative adversarial network (GAN). We show the potential of our method on up to 100-dimensional MFG problems.

In this paper, we consider the decentralized, stochastic nonconvex strongly-concave (NCSC) minimax problem with nonsmooth regularization terms on both primal and dual variables, wherein a network of $m$ computing agents collaborate via peer-to-peer communications. We consider when the coupling function is in expectation or finite-sum form and the double regularizers are convex functions, applied separately to the primal and dual variables. Our algorithmic framework introduces a Lagrangian multiplier to eliminate the consensus constraint on the dual variable. Coupling this with variance-reduction (VR) techniques, our proposed method, entitled VRLM, by a single neighbor communication per iteration, is able to achieve an $\mathcal{O}(\kappa^3\varepsilon^{-3})$ sample complexity under the general stochastic setting, with either a big-batch or small-batch VR option, where $\kappa$ is the condition number of the problem and $\varepsilon$ is the desired solution accuracy. With a big-batch VR, we can additionally achieve $\mathcal{O}(\kappa^2\varepsilon^{-2})$ communication complexity. Under the special finite-sum setting, our method with a big-batch VR can achieve an $\mathcal{O}(n + \sqrt{n} \kappa^2\varepsilon^{-2})$ sample complexity and $\mathcal{O}(\kappa^2\varepsilon^{-2})$ communication complexity, where $n$ is the number of components in the finite sum. All complexity results match the best-known results achieved by a few existing methods for solving special cases of the problem we consider. To the best of our knowledge, this is the first work which provides convergence guarantees for NCSC minimax problems with general convex nonsmooth regularizers applied to both the primal and dual variables in the decentralized stochastic setting. Numerical experiments are conducted on two machine learning problems. Our code is downloadable from //github.com/RPI-OPT/VRLM.

In many industrial applications, obtaining labeled observations is not straightforward as it often requires the intervention of human experts or the use of expensive testing equipment. In these circumstances, active learning can be highly beneficial in suggesting the most informative data points to be used when fitting a model. Reducing the number of observations needed for model development alleviates both the computational burden required for training and the operational expenses related to labeling. Online active learning, in particular, is useful in high-volume production processes where the decision about the acquisition of the label for a data point needs to be taken within an extremely short time frame. However, despite the recent efforts to develop online active learning strategies, the behavior of these methods in the presence of outliers has not been thoroughly examined. In this work, we investigate the performance of online active linear regression in contaminated data streams. Our study shows that the currently available query strategies are prone to sample outliers, whose inclusion in the training set eventually degrades the predictive performance of the models. To address this issue, we propose a solution that bounds the search area of a conditional D-optimal algorithm and uses a robust estimator. Our approach strikes a balance between exploring unseen regions of the input space and protecting against outliers. Through numerical simulations, we show that the proposed method is effective in improving the performance of online active learning in the presence of outliers, thus expanding the potential applications of this powerful tool.

Entropic risk (ERisk) is an established risk measure in finance, quantifying risk by an exponential re-weighting of rewards. We study ERisk for the first time in the context of turn-based stochastic games with the total reward objective. This gives rise to an objective function that demands the control of systems in a risk-averse manner. We show that the resulting games are determined and, in particular, admit optimal memoryless deterministic strategies. This contrasts risk measures that previously have been considered in the special case of Markov decision processes and that require randomization and/or memory. We provide several results on the decidability and the computational complexity of the threshold problem, i.e. whether the optimal value of ERisk exceeds a given threshold. In the most general case, the problem is decidable subject to Shanuel's conjecture. If all inputs are rational, the resulting threshold problem can be solved using algebraic numbers, leading to decidability via a polynomial-time reduction to the existential theory of the reals. Further restrictions on the encoding of the input allow the solution of the threshold problem in NP$\cap$coNP. Finally, an approximation algorithm for the optimal value of ERisk is provided.

This manuscript portrays optimization as a process. In many practical applications the environment is so complex that it is infeasible to lay out a comprehensive theoretical model and use classical algorithmic theory and mathematical optimization. It is necessary as well as beneficial to take a robust approach, by applying an optimization method that learns as one goes along, learning from experience as more aspects of the problem are observed. This view of optimization as a process has become prominent in varied fields and has led to some spectacular success in modeling and systems that are now part of our daily lives.

In this monograph, I introduce the basic concepts of Online Learning through a modern view of Online Convex Optimization. Here, online learning refers to the framework of regret minimization under worst-case assumptions. I present first-order and second-order algorithms for online learning with convex losses, in Euclidean and non-Euclidean settings. All the algorithms are clearly presented as instantiation of Online Mirror Descent or Follow-The-Regularized-Leader and their variants. Particular attention is given to the issue of tuning the parameters of the algorithms and learning in unbounded domains, through adaptive and parameter-free online learning algorithms. Non-convex losses are dealt through convex surrogate losses and through randomization. The bandit setting is also briefly discussed, touching on the problem of adversarial and stochastic multi-armed bandits. These notes do not require prior knowledge of convex analysis and all the required mathematical tools are rigorously explained. Moreover, all the proofs have been carefully chosen to be as simple and as short as possible.

北京阿比特科技有限公司