Physical activity plays a significant role in the well-being of individuals with Chronic obstructive Pulmonary Disease (COPD). Specifically, it has been directly associated with changes in hospitalization rates for these patients. However, previous investigations have primarily been conducted in a cross-sectional or longitudinal manner and have not considered a continuous perspective. Using the telEPOC program we use telemonitoring data to analyze the impact of physical activity adopting a functional data approach. However, Traditional functional data methods, including functional regression models, typically assume a consistent data domain. However, the data in the telEPOC program exhibits variable domains, presenting a challenge since the majority of functional data methods, are based on the fact that data are observed in the same domain. To address this challenge, we introduce a novel fully functional methodology tailored to variable domain functional data, eliminating the need for data alignment, which can be computationally taxing. Although models designed for variable domain data are relatively scarce and may have inherent limitations in their estimation methods, our approach circumvents these issues. We substantiate the effectiveness of our methodology through a simulation study, comparing our results with those obtained using established methodologies. Finally, we apply our methodology to analyze the impact of physical activity in COPD patients using the telEPOC program's data. Software for our method is available in the form of R code on request at \url{//github.com/Pavel-Hernadez-Amaro/V.D.F.R.M-new-estimation-approach.git}.
Computing demands for large scientific experiments, such as the CMS experiment at the CERN LHC, will increase dramatically in the next decades. To complement the future performance increases of software running on central processing units (CPUs), explorations of coprocessor usage in data processing hold great potential and interest. Coprocessors are a class of computer processors that supplement CPUs, often improving the execution of certain functions due to architectural design choices. We explore the approach of Services for Optimized Network Inference on Coprocessors (SONIC) and study the deployment of this as-a-service approach in large-scale data processing. In the studies, we take a data processing workflow of the CMS experiment and run the main workflow on CPUs, while offloading several machine learning (ML) inference tasks onto either remote or local coprocessors, specifically graphics processing units (GPUs). With experiments performed at Google Cloud, the Purdue Tier-2 computing center, and combinations of the two, we demonstrate the acceleration of these ML algorithms individually on coprocessors and the corresponding throughput improvement for the entire workflow. This approach can be easily generalized to different types of coprocessors and deployed on local CPUs without decreasing the throughput performance. We emphasize that the SONIC approach enables high coprocessor usage and enables the portability to run workflows on different types of coprocessors.
Numerical simulation of moving immersed solid bodies in fluids is now practiced routinely following pioneering work of Peskin and co-workers on immersed boundary method (IBM), Glowinski and co-workers on fictitious domain method (FDM), and others on related methods. A variety of variants of IBM and FDM approaches have been published, most of which rely on using a background mesh for the fluid equations and tracking the solid body using Lagrangian points. The key idea that is common to these methods is to assume that the entire fluid-solid domain is a fluid and then to constrain the fluid within the solid domain to move in accordance with the solid governing equations. The immersed solid body can be rigid or deforming. Thus, in all these methods the fluid domain is extended into the solid domain. In this review, we provide a mathemarical perspective of various immersed methods by recasting the governing equations in an extended domain form for the fluid. The solid equations are used to impose appropriate constraints on the fluid that is extended into the solid domain. This leads to extended domain constrained fluid-solid governing equations that provide a unified framework for various immersed body techniques. The unified constrained governing equations in the strong form are independent of the temporal or spatial discretization schemes. We show that particular choices of time stepping and spatial discretization lead to different techniques reported in literature ranging from freely moving rigid to elastic self-propelling bodies. These techniques have wide ranging applications including aquatic locomotion, underwater vehicles, car aerodynamics, and organ physiology (e.g. cardiac flow, esophageal transport, respiratory flows), wave energy convertors, among others. We conclude with comments on outstanding challenges and future directions.
Learning unknown stochastic differential equations (SDEs) from observed data is a significant and challenging task with applications in various fields. Current approaches often use neural networks to represent drift and diffusion functions, and construct likelihood-based loss by approximating the transition density to train these networks. However, these methods often rely on one-step stochastic numerical schemes, necessitating data with sufficiently high time resolution. In this paper, we introduce novel approximations to the transition density of the parameterized SDE: a Gaussian density approximation inspired by the random perturbation theory of dynamical systems, and its extension, the dynamical Gaussian mixture approximation (DynGMA). Benefiting from the robust density approximation, our method exhibits superior accuracy compared to baseline methods in learning the fully unknown drift and diffusion functions and computing the invariant distribution from trajectory data. And it is capable of handling trajectory data with low time resolution and variable, even uncontrollable, time step sizes, such as data generated from Gillespie's stochastic simulations. We then conduct several experiments across various scenarios to verify the advantages and robustness of the proposed method.
Program synthesis with Genetic Programming searches for a correct program that satisfies the input specification, which is usually provided as input-output examples. One particular challenge is how to effectively handle loops and recursion avoiding programs that never terminate. A helpful abstraction that can alleviate this problem is the employment of Recursion Schemes that generalize the combination of data production and consumption. Recursion Schemes are very powerful as they allow the construction of programs that can summarize data, create sequences, and perform advanced calculations. The main advantage of writing a program using Recursion Schemes is that the programs are composed of well defined templates with only a few parts that need to be synthesized. In this paper we make an initial study of the benefits of using program synthesis with fold and unfold templates, and outline some preliminary experimental results. To highlight the advantages and disadvantages of this approach, we manually solved the entire GPSB benchmark using recursion schemes, highlighting the parts that should be evolved compared to alternative implementations. We noticed that, once the choice of which recursion scheme is made, the synthesis process can be simplified as each of the missing parts of the template are reduced to simpler functions, which are further constrained by their own input and output types.
We propose a unified view of non-local methods for single-image denoising, for which BM3D is the most popular representative, that operate by gathering noisy patches together according to their similarities in order to process them collaboratively. Our general estimation framework is based on the minimization of the quadratic risk, which is approximated in two steps, and adapts to photon and electronic noises. Relying on unbiased risk estimation (URE) for the first step and on ``internal adaptation'', a concept borrowed from deep learning theory, for the second, we show that our approach enables to reinterpret and reconcile previous state-of-the-art non-local methods. Within this framework, we propose a novel denoiser called NL-Ridge that exploits linear combinations of patches. While conceptually simpler, we show that NL-Ridge can outperform well-established state-of-the-art single-image denoisers.
This paper focuses on coordinating a robot swarm orbiting a convex path without collisions among the individuals. The individual robots lack braking capabilities and can only adjust their courses while maintaining their constant but different speeds. Instead of controlling the spatial relations between the robots, our formation control algorithm aims to deploy a dense robot swarm that mimics the behavior of tornado schooling fish. To achieve this objective safely, we employ a combination of a scalable overtaking rule, a guiding vector field, and a control barrier function with an adaptive radius to facilitate smooth overtakes. The decision-making process of the robots is distributed, relying only on local information. Practical applications include defensive structures or escorting missions with the added resiliency of a swarm without a centralized command. We provide a rigorous analysis of the proposed strategy and validate its effectiveness through numerical simulations involving a high density of unicycles.
By computing a feedback control via the linear quadratic regulator (LQR) approach and simulating a non-linear non-autonomous closed-loop system using this feedback, we combine two numerically challenging tasks. For the first task, the computation of the feedback control, we use the non-autonomous generalized differential Riccati equation (DRE), whose solution determines the time-varying feedback gain matrix. Regarding the second task, we want to be able to simulate non-linear closed-loop systems for which it is known that the regulator is only valid for sufficiently small perturbations. Thus, one easily runs into numerical issues in the integrators when the closed-loop control varies greatly. For these systems, e.g., the A-stable implicit Euler methods fails.\newline On the one hand, we implement non-autonomous versions of splitting schemes and BDF methods for the solution of our non-autonomous DREs. These are well-established DRE solvers in the autonomous case. On the other hand, to tackle the numerical issues in the simulation of the non-linear closed-loop system, we apply a fractional-step-theta scheme with time-adaptivity tuned specifically to this kind of challenge. That is, we additionally base the time-adaptivity on the activity of the control. We compare this approach to the more classical error-based time-adaptivity.\newline We describe techniques to make these two tasks computable in a reasonable amount of time and are able to simulate closed-loop systems with strongly varying controls, while avoiding numerical issues. Our time-adaptivity approach requires fewer time steps than the error-based alternative and is more reliable.
The growth of dendritic grains during solidification is often modelled using the Grain Envelope Model (GEM), in which the envelope of the dendrite is an interface tracked by the Phase Field Interface Capturing (PFIC) method. In the PFIC method, an phase-field equation is solved on a fixed mesh to track the position of the envelope. While being versatile and robust, PFIC introduces certain numerical artefacts. In this work, we present an alternative approach for the solution of the GEM that employs a Meshless (sharp) Interface Tracking (MIT) formulation, which uses direct, artefact-free interface tracking. In the MIT, the envelope (interface) is defined as a moving domain boundary and the interface-tracking nodes are boundary nodes for the diffusion problem solved in the domain. To increase the accuracy of the method for the diffusion-controlled moving-boundary problem, an \h-adaptive spatial discretization is used, thus, the node spacing is refined in the vicinity of the envelope. MIT combines a parametric surface reconstruction, a mesh-free discretization of the parametric surfaces and the space enclosed by them, and a high-order approximation of the partial differential operators and of the solute concentration field using radial basis functions augmented with monomials. The proposed method is demonstrated on a two-dimensional \h-adaptive solution of the diffusive growth of dendrite and evaluated by comparing the results to the PFIC approach. It is shown that MIT can reproduce the results calculated with PFIC, that it is convergent and that it can capture more details in the envelope shape than PFIC with a similar spatial discretization.
Accurate triangulation of the domain plays a pivotal role in computing the numerical approximation of the differential operators. A good triangulation is the one which aids in reducing discretization errors. In a standard collocation technique, the smooth curved domain is typically triangulated with a mesh by taking points on the boundary to approximate them by polygons. However, such an approach often leads to geometrical errors which directly affect the accuracy of the numerical approximation. To restrict such geometrical errors, \textit{isoparametric}, \textit{subparametric}, and \textit{iso-geometric} methods were introduced which allow the approximation of the curved surfaces (or curved line segments). In this paper, we present an efficient finite element method to approximate the solution to the elliptic boundary value problem (BVP), which governs the response of an elastic solid containing a v-notch and inclusions. The algebraically nonlinear constitutive equation along with the balance of linear momentum reduces to second-order quasi-linear elliptic partial differential equation. Our approach allows us to represent the complex curved boundaries by smooth \textit{one-of-its-kind} point transformation. The main idea is to obtain higher-order shape functions which enable us to accurately compute the entries in the finite element matrices and vectors. A Picard-type linearization is utilized to handle the nonlinearities in the governing differential equation. The numerical results for the test cases show considerable improvement in the accuracy.
Time-series models typically assume untainted and legitimate streams of data. However, a self-interested adversary may have incentive to corrupt this data, thereby altering a decision maker's inference. Within the broader field of adversarial machine learning, this research provides a novel, probabilistic perspective toward the manipulation of hidden Markov model inferences via corrupted data. In particular, we provision a suite of corruption problems for filtering, smoothing, and decoding inferences leveraging an adversarial risk analysis approach. Multiple stochastic programming models are set forth that incorporate realistic uncertainties and varied attacker objectives. Three general solution methods are developed by alternatively viewing the problem from frequentist and Bayesian perspectives. The efficacy of each method is illustrated via extensive, empirical testing. The developed methods are characterized by their solution quality and computational effort, resulting in a stratification of techniques across varying problem-instance architectures. This research highlights the weaknesses of hidden Markov models under adversarial activity, thereby motivating the need for robustification techniques to ensure their security.