We study the problem of finding a Hamiltonian cycle under the promise that the input graph has a minimum degree of at least $n/2$, where $n$ denotes the number of vertices in the graph. The classical theorem of Dirac states that such graphs (a.k.a. Dirac graphs) are Hamiltonian, i.e., contain a Hamiltonian cycle. Moreover, finding a Hamiltonian cycle in Dirac graphs can be done in polynomial time in the classical centralized model. This paper presents a randomized distributed CONGEST algorithm that finds w.h.p. a Hamiltonian cycle (as well as maximum matching) within $O(\log n)$ rounds under the promise that the input graph is a Dirac graph. This upper bound is in contrast to general graphs in which both the decision and search variants of Hamiltonicity require $\tilde{\Omega}(n^2)$ rounds, as shown by Bachrach et al. [PODC'19]. In addition, we consider two generalizations of Dirac graphs: Ore graphs and Rahman-Kaykobad graphs [IPL'05]. In Ore graphs, the sum of the degrees of every pair of non-adjacent vertices is at least $n$, and in Rahman-Kaykobad graphs, the sum of the degrees of every pair of non-adjacent vertices plus their distance is at least $n+1$. We show how our algorithm for Dirac graphs can be adapted to work for these more general families of graphs.
We propose the first method that realizes the Laplace mechanism exactly (i.e., a Laplace noise is added to the data) that requires only a finite amount of communication (whereas the original Laplace mechanism requires the transmission of a real number) while guaranteeing privacy against the server and database. Our mechanism can serve as a drop-in replacement for local or centralized differential privacy applications where the Laplace mechanism is used. Our mechanism is constructed using a random quantization technique. Unlike the simple and prevalent Laplace-mechanism-then-quantize approach, the quantization in our mechanism does not result in any distortion or degradation of utility. Unlike existing dithered quantization and channel simulation schemes for simulating additive Laplacian noise, our mechanism guarantees privacy not only against the database and downstream, but also against the honest but curious server which attempts to decode the data using the dither signals.
In this paper, we present distributed fault-tolerant algorithms that approximate the centroid of a set of $n$ data points in $\mathbb{R}^d$. Our work falls into the broader area of approximate multidimensional Byzantine agreement. The standard approach used in existing algorithms is to agree on a vector inside the convex hull of all correct vectors. This strategy dismisses many possibly correct data points. As a result, the algorithm does not necessarily agree on a representative value. To find better convergence strategies for the algorithms, we use the novel concept of defining an approximation of the centroid in the presence of Byzantine adversaries. We show that the standard agreement algorithms do not allow us to compute a better approximation than $2d$ of the centroid in the synchronous case. We investigate the trade-off between the quality of the approximation, the resilience of the algorithm, and the validity of the solution in order to design better approximation algorithms. For the synchronous case, we show that it is possible to achieve an optimal approximation of the centroid with up to $t<n/(d+1)$ Byzantine data points. This approach however does not give any guarantee on the validity of the solution. Therefore, we develop a second approach that reaches a $2\sqrt{d}$-approximation of the centroid, while satisfying the standard validity condition for agreement protocols. We are even able to restrict the validity condition to agreement inside the box of correct data points, while achieving optimal resilience of $t< n/3$. For the asynchronous case, we can adapt all three algorithms to reach the same approximation results (up to a constant factor). Our results suggest that it is reasonable to study the trade-off between validity conditions and the quality of the solution.
We propose a local model-checking proof system for a fragment of CTL. The rules of the proof system are motivated by the well-known fixed-point characterisation of CTL based on unfolding of the temporal operators. To guarantee termination of proofs, we tag the sequents of our proof system with the set of states that have already been explored for the respective temporal formula. We define the semantics of tagged sequents, and then state and prove soundness and completeness of the proof system, as well as termination of proof search for finite-state models.
The quantum thermal average is a central topic in quantum physics and can be represented by the path integrals. For the computational perspective, the path integral representation (PIR) needs to be approximated in a finite-dimensional space, and the convergence of such approximation is termed as the convergence of the PIR. In this paper, we establish the Trotter product formula in the trace form, which connects the quantum thermal average and the Boltzmann distribution of a continuous loop in a rigorous way. We prove the qualitative convergence of the standard PIR, and obtain the explicit convergence rates of the continuous loop PIR. These results showcase various approaches to approximate the quantum thermal average, which provide theoretical guarantee for the path integral approaches of quantum thermal equilibrium systems, such as the path integral molecular dynamics.
Over decades, neuroscience has accumulated a wealth of research results in the text modality that can be used to explore cognitive processes. Meta-analysis is a typical method that successfully establishes a link from text queries to brain activation maps using these research results, but it still relies on an ideal query environment. In practical applications, text queries used for meta-analyses may encounter issues such as semantic redundancy and ambiguity, resulting in an inaccurate mapping to brain images. On the other hand, large language models (LLMs) like ChatGPT have shown great potential in tasks such as context understanding and reasoning, displaying a high degree of consistency with human natural language. Hence, LLMs could improve the connection between text modality and neuroscience, resolving existing challenges of meta-analyses. In this study, we propose a method called Chat2Brain that combines LLMs to basic text-2-image model, known as Text2Brain, to map open-ended semantic queries to brain activation maps in data-scarce and complex query environments. By utilizing the understanding and reasoning capabilities of LLMs, the performance of the mapping model is optimized by transferring text queries to semantic queries. We demonstrate that Chat2Brain can synthesize anatomically plausible neural activation patterns for more complex tasks of text queries.
Wireless communication systems to date primarily rely on the orthogonality of resources to facilitate the design and implementation, from user access to data transmission. Emerging applications and scenarios in the sixth generation (6G) wireless systems will require massive connectivity and transmission of a deluge of data, which calls for more flexibility in the design concept that goes beyond orthogonality. Furthermore, recent advances in signal processing and learning have attracted considerable attention, as they provide promising approaches to various complex and previously intractable problems of signal processing in many fields. This article provides an overview of research efforts to date in the field of signal processing and learning for next-generation multiple access, with an emphasis on massive random access and non-orthogonal multiple access. The promising interplay with new technologies and the challenges in learning-based NGMA are discussed.
Counterfactual explanations (CFEs) exemplify how to minimally modify a feature vector to achieve a different prediction for an instance. CFEs can enhance informational fairness and trustworthiness, and provide suggestions for users who receive adverse predictions. However, recent research has shown that multiple CFEs can be offered for the same instance or instances with slight differences. Multiple CFEs provide flexible choices and cover diverse desiderata for user selection. However, individual fairness and model reliability will be damaged if unstable CFEs with different costs are returned. Existing methods fail to exploit flexibility and address the concerns of non-robustness simultaneously. To address these issues, we propose a conceptually simple yet effective solution named Counterfactual Explanations with Minimal Satisfiable Perturbations (CEMSP). Specifically, CEMSP constrains changing values of abnormal features with the help of their semantically meaningful normal ranges. For efficiency, we model the problem as a Boolean satisfiability problem to modify as few features as possible. Additionally, CEMSP is a general framework and can easily accommodate more practical requirements, e.g., casualty and actionability. Compared to existing methods, we conduct comprehensive experiments on both synthetic and real-world datasets to demonstrate that our method provides more robust explanations while preserving flexibility.
We study the complexity of the problem of verifying differential privacy for while-like programs working over boolean values and making probabilistic choices. Programs in this class can be interpreted into finite-state discrete-time Markov Chains (DTMC). We show that the problem of deciding whether a program is differentially private for specific values of the privacy parameters is PSPACE-complete. To show that this problem is in PSPACE, we adapt classical results about computing hitting probabilities for DTMC. To show PSPACE-hardness we use a reduction from the problem of checking whether a program almost surely terminates or not. We also show that the problem of approximating the privacy parameters that a program provides is PSPACE-hard. Moreover, we investigate the complexity of similar problems also for several relaxations of differential privacy: R\'enyi differential privacy, concentrated differential privacy, and truncated concentrated differential privacy. For these notions, we consider gap-versions of the problem of deciding whether a program is private or not and we show that all of them are PSPACE-complete.
We address the task of automatically scoring the competency of candidates based on textual features, from the automatic speech recognition (ASR) transcriptions in the asynchronous video job interview (AVI). The key challenge is how to construct the dependency relation between questions and answers, and conduct the semantic level interaction for each question-answer (QA) pair. However, most of the recent studies in AVI focus on how to represent questions and answers better, but ignore the dependency information and interaction between them, which is critical for QA evaluation. In this work, we propose a Hierarchical Reasoning Graph Neural Network (HRGNN) for the automatic assessment of question-answer pairs. Specifically, we construct a sentence-level relational graph neural network to capture the dependency information of sentences in or between the question and the answer. Based on these graphs, we employ a semantic-level reasoning graph attention network to model the interaction states of the current QA session. Finally, we propose a gated recurrent unit encoder to represent the temporal question-answer pairs for the final prediction. Empirical results conducted on CHNAT (a real-world dataset) validate that our proposed model significantly outperforms text-matching based benchmark models. Ablation studies and experimental results with 10 random seeds also show the effectiveness and stability of our models.
Dynamic programming (DP) solves a variety of structured combinatorial problems by iteratively breaking them down into smaller subproblems. In spite of their versatility, DP algorithms are usually non-differentiable, which hampers their use as a layer in neural networks trained by backpropagation. To address this issue, we propose to smooth the max operator in the dynamic programming recursion, using a strongly convex regularizer. This allows to relax both the optimal value and solution of the original combinatorial problem, and turns a broad class of DP algorithms into differentiable operators. Theoretically, we provide a new probabilistic perspective on backpropagating through these DP operators, and relate them to inference in graphical models. We derive two particular instantiations of our framework, a smoothed Viterbi algorithm for sequence prediction and a smoothed DTW algorithm for time-series alignment. We showcase these instantiations on two structured prediction tasks and on structured and sparse attention for neural machine translation.