亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In end-to-end autonomous driving, the utilization of existing sensor fusion techniques for imitation learning proves inadequate in challenging situations that involve numerous dynamic agents. To address this issue, we introduce LeTFuser, a transformer-based algorithm for fusing multiple RGB-D camera representations. To perform perception and control tasks simultaneously, we utilize multi-task learning. Our model comprises of two modules, the first being the perception module that is responsible for encoding the observation data obtained from the RGB-D cameras. It carries out tasks such as semantic segmentation, semantic depth cloud mapping (SDC), and traffic light state recognition. Our approach employs the Convolutional vision Transformer (CvT) \cite{wu2021cvt} to better extract and fuse features from multiple RGB cameras due to local and global feature extraction capability of convolution and transformer modules, respectively. Following this, the control module undertakes the decoding of the encoded characteristics together with supplementary data, comprising a rough simulator for static and dynamic environments, as well as various measurements, in order to anticipate the waypoints associated with a latent feature space. We use two methods to process these outputs and generate the vehicular controls (e.g. steering, throttle, and brake) levels. The first method uses a PID algorithm to follow the waypoints on the fly, whereas the second one directly predicts the control policy using the measurement features and environmental state. We evaluate the model and conduct a comparative analysis with recent models on the CARLA simulator using various scenarios, ranging from normal to adversarial conditions, to simulate real-world scenarios. Our code is available at \url{//github.com/pagand/e2etransfuser/tree/cvpr-w} to facilitate future studies.

相關內容

Pedestrian trajectory prediction, vital for selfdriving cars and socially-aware robots, is complicated due to intricate interactions between pedestrians, their environment, and other Vulnerable Road Users. This paper presents GSGFormer, an innovative generative model adept at predicting pedestrian trajectories by considering these complex interactions and offering a plethora of potential modal behaviors. We incorporate a heterogeneous graph neural network to capture interactions between pedestrians, semantic maps, and potential destinations. The Transformer module extracts temporal features, while our novel CVAE-Residual-GMM module promotes diverse behavioral modality generation. Through evaluations on multiple public datasets, GSGFormer not only outperforms leading methods with ample data but also remains competitive when data is limited.

Masked reconstruction serves as a fundamental pretext task for self-supervised learning, enabling the model to enhance its feature extraction capabilities by reconstructing the masked segments from extensive unlabeled data. In human activity recognition, this pretext task employed a masking strategy centered on the time dimension. However, this masking strategy fails to fully exploit the inherent characteristics of wearable sensor data and overlooks the inter-channel information coupling, thereby limiting its potential as a powerful pretext task. To address these limitations, we propose a novel masking strategy called Channel Masking. It involves masking the sensor data along the channel dimension, thereby compelling the encoder to extract channel-related features while performing the masked reconstruction task. Moreover, Channel Masking can be seamlessly integrated with masking strategies along the time dimension, thereby motivating the self-supervised model to undertake the masked reconstruction task in both the time and channel dimensions. Integrated masking strategies are named Time-Channel Masking and Span-Channel Masking. Finally, we optimize the reconstruction loss function to incorporate the reconstruction loss in both the time and channel dimensions. We evaluate proposed masking strategies on three public datasets, and experimental results show that the proposed strategies outperform prior strategies in both self-supervised and semi-supervised scenarios.

Although advancements in machine learning have driven the development of malicious URL detection technology, current techniques still face significant challenges in their capacity to generalize and their resilience against evolving threats. In this paper, we propose PyraTrans, a novel method that integrates pretrained Transformers with pyramid feature learning to detect malicious URL. PyraTrans utilizes a pretrained CharBERT as its foundation and is augmented with three interconnected feature modules: 1) Encoder Feature Extraction, extracting multi-order feature matrices from each CharBERT encoder layer; 2) Multi-Scale Feature Learning, capturing local contextual insights at various scales and aggregating information across encoder layers; and 3) Spatial Pyramid Attention, focusing on regional-level attention to emphasize areas rich in expressive information. The proposed approach addresses the limitations of the Transformer in local feature learning and regional relational awareness, which are vital for capturing URL-specific word patterns, character combinations, or structural anomalies. In several challenging experimental scenarios, the proposed method has shown significant improvements in accuracy, generalization, and robustness in malicious URL detection. For instance, it achieved a peak F1-score improvement of 40% in class-imbalanced scenarios, and exceeded the best baseline result by 14.13% in accuracy in adversarial attack scenarios. Additionally, we conduct a case study where our method accurately identifies all 30 active malicious web pages, whereas two pior SOTA methods miss 4 and 7 malicious web pages respectively. Codes and data are available at://github.com/Alixyvtte/PyraTrans.

This work proposes a unified self-supervised pre-training framework for transferable multi-modal perception representation learning via masked multi-modal reconstruction in Neural Radiance Field (NeRF), namely NeRF-Supervised Masked AutoEncoder (NS-MAE). Specifically, conditioned on certain view directions and locations, multi-modal embeddings extracted from corrupted multi-modal input signals, i.e., Lidar point clouds and images, are rendered into projected multi-modal feature maps via neural rendering. Then, original multi-modal signals serve as reconstruction targets for the rendered multi-modal feature maps to enable self-supervised representation learning. Extensive experiments show that the representation learned via NS-MAE shows promising transferability for diverse multi-modal and single-modal (camera-only and Lidar-only) perception models on diverse 3D perception downstream tasks (3D object detection and BEV map segmentation) with diverse amounts of fine-tuning labeled data. Moreover, we empirically find that NS-MAE enjoys the synergy of both the mechanism of masked autoencoder and neural radiance field. We hope this study can inspire exploration of more general multi-modal representation learning for autonomous agents.

Shared autonomy imitation learning, in which robots share workspace with humans for learning, enables correct actions in unvisited states and the effective resolution of compounding errors through expert's corrections. However, it demands continuous human attention and supervision to lead the demonstrations, without considering the risks associated with human judgment errors and delayed interventions. This can potentially lead to high levels of fatigue for the demonstrator and the additional errors. In this work, we propose an uncertainty-aware shared autonomy system that enables the robot to infer conservative task skills considering environmental uncertainties and learning from expert demonstrations and corrections. To enhance generalization and scalability, we introduce a hierarchical structure-based skill uncertainty inference framework operating at more abstract levels. We apply this to robot motion to promote a more stable interaction. Although shared autonomy systems have demonstrated high-level results in recent research and play a critical role, specific system design details have remained elusive. This paper provides a detailed design proposal for a shared autonomy system considering various robot configurations. Furthermore, we experimentally demonstrate the system's capability to learn operational skills, even in dynamic environments with interference, through pouring and pick-and-place tasks. Our code will be released soon.

Motion prediction has been an essential component of autonomous driving systems since it handles highly uncertain and complex scenarios involving moving agents of different types. In this paper, we propose a Multi-Granular TRansformer (MGTR) framework, an encoder-decoder network that exploits context features in different granularities for different kinds of traffic agents. To further enhance MGTR's capabilities, we leverage LiDAR point cloud data by incorporating LiDAR semantic features from an off-the-shelf LiDAR feature extractor. We evaluate MGTR on Waymo Open Dataset motion prediction benchmark and show that the proposed method achieved state-of-the-art performance, ranking 1st on its leaderboard (//waymo.com/open/challenges/2023/motion-prediction/).

The rapid development of deep learning has made a great progress in segmentation, one of the fundamental tasks of computer vision. However, the current segmentation algorithms mostly rely on the availability of pixel-level annotations, which are often expensive, tedious, and laborious. To alleviate this burden, the past years have witnessed an increasing attention in building label-efficient, deep-learning-based segmentation algorithms. This paper offers a comprehensive review on label-efficient segmentation methods. To this end, we first develop a taxonomy to organize these methods according to the supervision provided by different types of weak labels (including no supervision, coarse supervision, incomplete supervision and noisy supervision) and supplemented by the types of segmentation problems (including semantic segmentation, instance segmentation and panoptic segmentation). Next, we summarize the existing label-efficient segmentation methods from a unified perspective that discusses an important question: how to bridge the gap between weak supervision and dense prediction -- the current methods are mostly based on heuristic priors, such as cross-pixel similarity, cross-label constraint, cross-view consistency, cross-image relation, etc. Finally, we share our opinions about the future research directions for label-efficient deep segmentation.

Semi-supervised learning on class-imbalanced data, although a realistic problem, has been under studied. While existing semi-supervised learning (SSL) methods are known to perform poorly on minority classes, we find that they still generate high precision pseudo-labels on minority classes. By exploiting this property, in this work, we propose Class-Rebalancing Self-Training (CReST), a simple yet effective framework to improve existing SSL methods on class-imbalanced data. CReST iteratively retrains a baseline SSL model with a labeled set expanded by adding pseudo-labeled samples from an unlabeled set, where pseudo-labeled samples from minority classes are selected more frequently according to an estimated class distribution. We also propose a progressive distribution alignment to adaptively adjust the rebalancing strength dubbed CReST+. We show that CReST and CReST+ improve state-of-the-art SSL algorithms on various class-imbalanced datasets and consistently outperform other popular rebalancing methods.

Conventional methods for object detection typically require a substantial amount of training data and preparing such high-quality training data is very labor-intensive. In this paper, we propose a novel few-shot object detection network that aims at detecting objects of unseen categories with only a few annotated examples. Central to our method are our Attention-RPN, Multi-Relation Detector and Contrastive Training strategy, which exploit the similarity between the few shot support set and query set to detect novel objects while suppressing false detection in the background. To train our network, we contribute a new dataset that contains 1000 categories of various objects with high-quality annotations. To the best of our knowledge, this is one of the first datasets specifically designed for few-shot object detection. Once our few-shot network is trained, it can detect objects of unseen categories without further training or fine-tuning. Our method is general and has a wide range of potential applications. We produce a new state-of-the-art performance on different datasets in the few-shot setting. The dataset link is //github.com/fanq15/Few-Shot-Object-Detection-Dataset.

We introduce a multi-task setup of identifying and classifying entities, relations, and coreference clusters in scientific articles. We create SciERC, a dataset that includes annotations for all three tasks and develop a unified framework called Scientific Information Extractor (SciIE) for with shared span representations. The multi-task setup reduces cascading errors between tasks and leverages cross-sentence relations through coreference links. Experiments show that our multi-task model outperforms previous models in scientific information extraction without using any domain-specific features. We further show that the framework supports construction of a scientific knowledge graph, which we use to analyze information in scientific literature.

北京阿比特科技有限公司