亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Finding a solution to the linear system $Ax = b$ with various minimization properties arises from many engineering and computer science applications, including compressed sensing, image processing, and machine learning. In the age of big data, the scalability of stochastic optimization algorithms has made it increasingly important to solve problems of unprecedented sizes. This paper focuses on the problem of minimizing a strongly convex objective function subject to linearly constraints. We consider the dual formulation of this problem and adopt the stochastic coordinate descent to solve it. The proposed algorithmic framework, called fast stochastic dual coordinate descent, utilizes an adaptive variation of Polyak's heavy ball momentum and user-defined distributions for sampling. Our adaptive heavy ball momentum technique can efficiently update the parameters by using iterative information, overcoming the limitation of the heavy ball momentum method where prior knowledge of certain parameters, such as singular values of a matrix, is required. We prove that, under strongly admissible of the objective function, the propose method converges linearly in expectation. By varying the sampling matrix, we recover a comprehensive array of well-known algorithms as special cases, including the randomized sparse Kaczmarz method, the randomized regularized Kaczmarz method, the linearized Bregman iteration, and a variant of the conjugate gradient (CG) method. Numerical experiments are provided to confirm our results.

相關內容

坐標下降法(coordinate descent)是一種非梯度優化算法。算法在每次迭代中,在當前點處沿一個坐標方向進行一維搜索以求得一個函數的局部極小值。在整個過程中循環使用不同的坐標方向。對于不可拆分的函數而言,算法可能無法在較小的迭代步數中求得最優解。為了加速收斂,可以采用一個適當的坐標系,例如通過主成分分析獲得一個坐標間盡可能不相互關聯的新坐標系.

Ordinary state-based peridynamic (OSB-PD) models have an unparalleled capability to simulate crack propagation phenomena in solids with arbitrary Poisson's ratio. However, their non-locality also leads to prohibitively high computational cost. In this paper, a fast solution scheme for OSB-PD models based on matrix operation is introduced, with which, the graphics processing units (GPUs) are used to accelerate the computation. For the purpose of comparison and verification, a commonly used solution scheme based on loop operation is also presented. An in-house software is developed in MATLAB. Firstly, the vibration of a cantilever beam is solved for validating the loop- and matrix-based schemes by comparing the numerical solutions to those produced by a FEM software. Subsequently, two typical dynamic crack propagation problems are simulated to illustrate the effectiveness of the proposed schemes in solving dynamic fracture problems. Finally, the simulation of the Brokenshire torsion experiment is carried out by using the matrix-based scheme, and the similarity in the shapes of the experimental and numerical broken specimens further demonstrates the ability of the proposed approach to deal with 3D non-planar fracture problems. In addition, the speed-up of the matrix-based scheme with respect to the loop-based scheme and the performance of the GPU acceleration are investigated. The results emphasize the high computational efficiency of the matrix-based implementation scheme.

We examine a stochastic formulation for data-driven optimization wherein the decision-maker is not privy to the true distribution, but has knowledge that it lies in some hypothesis set and possesses a historical data set, from which information about it can be gleaned. We define a prescriptive solution as a decision rule mapping such a data set to decisions. As there does not exist prescriptive solutions that are generalizable over the entire hypothesis set, we define out-of-sample optimality as a local average over a neighbourhood of hypotheses, and averaged over the sampling distribution. We prove sufficient conditions for local out-of-sample optimality, which reduces to functions of the sufficient statistic of the hypothesis family. We present an optimization problem that would solve for such an out-of-sample optimal solution, and does so efficiently by a combination of sampling and bisection search algorithms. Finally, we illustrate our model on the newsvendor model, and find strong performance when compared against alternatives in the literature. There are potential implications of our research on end-to-end learning and Bayesian optimization.

Quantum neural networks (QNNs) and quantum kernels stand as prominent figures in the realm of quantum machine learning, poised to leverage the nascent capabilities of near-term quantum computers to surmount classical machine learning challenges. Nonetheless, the training efficiency challenge poses a limitation on both QNNs and quantum kernels, curbing their efficacy when applied to extensive datasets. To confront this concern, we present a unified approach: coreset selection, aimed at expediting the training of QNNs and quantum kernels by distilling a judicious subset from the original training dataset. Furthermore, we analyze the generalization error bounds of QNNs and quantum kernels when trained on such coresets, unveiling the comparable performance with those training on the complete original dataset. Through systematic numerical simulations, we illuminate the potential of coreset selection in expediting tasks encompassing synthetic data classification, identification of quantum correlations, and quantum compiling. Our work offers a useful way to improve diverse quantum machine learning models with a theoretical guarantee while reducing the training cost.

In PDE-constrained optimization, one aims to find design parameters that minimize some objective, subject to the satisfaction of a partial differential equation. A major challenges is computing gradients of the objective to the design parameters, as applying the chain rule requires computing the Jacobian of the design parameters to the PDE's state. The adjoint method avoids this Jacobian by computing partial derivatives of a Lagrangian. Evaluating these derivatives requires the solution of a second PDE with the adjoint differential operator to the constraint, resulting in a backwards-in-time simulation. Particle-based Monte Carlo solvers are often used to compute the solution to high-dimensional PDEs. However, such solvers have the drawback of introducing noise to the computed results, thus requiring stochastic optimization methods. To guarantee convergence in this setting, both the constraint and adjoint Monte Carlo simulations should simulate the same particle trajectories. For large simulations, storing full paths from the constraint equation for re-use in the adjoint equation becomes infeasible due to memory limitations. In this paper, we provide a reversible extension to the family of permuted congruential pseudorandom number generators (PCG). We then use such a generator to recompute these time-reversed paths for the heat equation, avoiding these memory issues.

We consider the problem of sequential change detection, where the goal is to design a scheme for detecting any changes in a parameter or functional $\theta$ of the data stream distribution that has small detection delay, but guarantees control on the frequency of false alarms in the absence of changes. In this paper, we describe a simple reduction from sequential change detection to sequential estimation using confidence sequences: we begin a new $(1-\alpha)$-confidence sequence at each time step, and proclaim a change when the intersection of all active confidence sequences becomes empty. We prove that the average run length is at least $1/\alpha$, resulting in a change detection scheme with minimal structural assumptions~(thus allowing for possibly dependent observations, and nonparametric distribution classes), but strong guarantees. Our approach bears an interesting parallel with the reduction from change detection to sequential testing of Lorden (1971) and the e-detector of Shin et al. (2022).

A general a posteriori error analysis applies to five lowest-order finite element methods for two fourth-order semi-linear problems with trilinear non-linearity and a general source. A quasi-optimal smoother extends the source term to the discrete trial space, and more importantly, modifies the trilinear term in the stream-function vorticity formulation of the incompressible 2D Navier-Stokes and the von K\'{a}rm\'{a}n equations. This enables the first efficient and reliable a posteriori error estimates for the 2D Navier-Stokes equations in the stream-function vorticity formulation for Morley, two discontinuous Galerkin, $C^0$ interior penalty, and WOPSIP discretizations with piecewise quadratic polynomials.

Solving multiphysics-based inverse problems for geological carbon storage monitoring can be challenging when multimodal time-lapse data are expensive to collect and costly to simulate numerically. We overcome these challenges by combining computationally cheap learned surrogates with learned constraints. Not only does this combination lead to vastly improved inversions for the important fluid-flow property, permeability, it also provides a natural platform for inverting multimodal data including well measurements and active-source time-lapse seismic data. By adding a learned constraint, we arrive at a computationally feasible inversion approach that remains accurate. This is accomplished by including a trained deep neural network, known as a normalizing flow, which forces the model iterates to remain in-distribution, thereby safeguarding the accuracy of trained Fourier neural operators that act as surrogates for the computationally expensive multiphase flow simulations involving partial differential equation solves. By means of carefully selected experiments, centered around the problem of geological carbon storage, we demonstrate the efficacy of the proposed constrained optimization method on two different data modalities, namely time-lapse well and time-lapse seismic data. While permeability inversions from both these two modalities have their pluses and minuses, their joint inversion benefits from either, yielding valuable superior permeability inversions and CO2 plume predictions near, and far away, from the monitoring wells.

Transition amplitudes and transition probabilities are relevant to many areas of physics simulation, including the calculation of response properties and correlation functions. These quantities can also be related to solving linear systems of equations. Here we present three related algorithms for calculating transition probabilities. First, we extend a previously published short-depth algorithm, allowing for the two input states to be non-orthogonal. Building on this first procedure, we then derive a higher-depth algorithm based on Trotterization and Richardson extrapolation that requires fewer circuit evaluations. Third, we introduce a tunable algorithm that allows for trading off circuit depth and measurement complexity, yielding an algorithm that can be tailored to specific hardware characteristics. Finally, we implement proof-of-principle numerics for models in physics and chemistry and for a subroutine in variational quantum linear solving (VQLS). The primary benefits of our approaches are that (a) arbitrary non-orthogonal states may now be used with small increases in quantum resources, (b) we (like another recently proposed method) entirely avoid subroutines such as the Hadamard test that may require three-qubit gates to be decomposed, and (c) in some cases fewer quantum circuit evaluations are required as compared to the previous state-of-the-art in NISQ algorithms for transition probabilities.

When modelling discontinuities (interfaces) using the finite element method, the standard approach is to use a conforming finite-element mesh in which the mesh matches the interfaces. However, this approach can prove cumbersome if the geometry is complex, in particular in 3D. In this work, we develop an efficient technique for a non-conforming finite-element treatment of weak discontinuities by using laminated microstructures. The approach is inspired by the so-called composite voxel technique that has been developed for FFT-based spectral solvers in computational homogenization. The idea behind the method is rather simple. Each finite element that is cut by an interface is treated as a simple laminate with the volume fraction of the phases and the lamination orientation determined in terms of the actual geometrical arrangement of the interface within the element. The approach is illustrated by several computational examples relevant to the micromechanics of heterogeneous materials. Elastic and elastic-plastic materials at small and finite strain are considered in the examples. The performance of the proposed method is compared to two alternative, simple methods showing that the new approach is in most cases superior to them while maintaining the simplicity.

We derive information-theoretic generalization bounds for supervised learning algorithms based on the information contained in predictions rather than in the output of the training algorithm. These bounds improve over the existing information-theoretic bounds, are applicable to a wider range of algorithms, and solve two key challenges: (a) they give meaningful results for deterministic algorithms and (b) they are significantly easier to estimate. We show experimentally that the proposed bounds closely follow the generalization gap in practical scenarios for deep learning.

北京阿比特科技有限公司