亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Backdoor attacks have become a major security threat for deploying machine learning models in security-critical applications. Existing research endeavors have proposed many defenses against backdoor attacks. Despite demonstrating certain empirical defense efficacy, none of these techniques could provide a formal and provable security guarantee against arbitrary attacks. As a result, they can be easily broken by strong adaptive attacks, as shown in our evaluation. In this work, we propose TextGuard, the first provable defense against backdoor attacks on text classification. In particular, TextGuard first divides the (backdoored) training data into sub-training sets, achieved by splitting each training sentence into sub-sentences. This partitioning ensures that a majority of the sub-training sets do not contain the backdoor trigger. Subsequently, a base classifier is trained from each sub-training set, and their ensemble provides the final prediction. We theoretically prove that when the length of the backdoor trigger falls within a certain threshold, TextGuard guarantees that its prediction will remain unaffected by the presence of the triggers in training and testing inputs. In our evaluation, we demonstrate the effectiveness of TextGuard on three benchmark text classification tasks, surpassing the certification accuracy of existing certified defenses against backdoor attacks. Furthermore, we propose additional strategies to enhance the empirical performance of TextGuard. Comparisons with state-of-the-art empirical defenses validate the superiority of TextGuard in countering multiple backdoor attacks. Our code and data are available at //github.com/AI-secure/TextGuard.

相關內容

文本分類(lei)(Text Classification)任務是根據給定(ding)文檔的內容或主(zhu)題,自動分配預先定(ding)義(yi)的類(lei)別標簽。

Foundation models encode rich representations that can be adapted to a desired task by fine-tuning on task-specific data. However, fine-tuning a model on one particular data distribution often compromises the model's original performance on other distributions. Current methods for robust fine-tuning utilize hand-crafted regularization techniques to constrain the fine-tuning process towards the base foundation model. Yet, it is hard to precisely specify what characteristics of the foundation model to retain during fine-tuning, as this depends on how the pre-training, fine-tuning, and evaluation data distributions relate to each other. We propose AutoFT, a data-driven approach for guiding foundation model fine-tuning. AutoFT optimizes fine-tuning hyperparameters to maximize performance on a small out-of-distribution (OOD) validation set. To guide fine-tuning in a granular way, AutoFT searches a highly expressive hyperparameter space that includes weight coefficients for many different losses, in addition to learning rate and weight decay values. We evaluate AutoFT on nine natural distribution shifts which include domain shifts and subpopulation shifts. Our experiments show that AutoFT significantly improves generalization to new OOD data, outperforming existing robust fine-tuning methods. Notably, AutoFT achieves new state-of-the-art performance on the WILDS-iWildCam and WILDS-FMoW benchmarks, outperforming the previous best methods by $6.0\%$ and $1.5\%$, respectively.

The evolving landscape of Decentralized Finance (DeFi) has raised critical security concerns, especially pertaining to Protocols for Loanable Funds (PLFs) and their dependency on price oracles, which are susceptible to manipulation. The emergence of flash loans has further amplified these risks, enabling increasingly complex oracle manipulation attacks that can lead to significant financial losses. Responding to this threat, we first dissect the attack mechanism by formalizing the standard operational and adversary models for PLFs. Based on our analysis, we propose SecPLF, a robust and practical solution designed to counteract oracle manipulation attacks efficiently. SecPLF operates by tracking a price state for each crypto-asset, including the recent price and the timestamp of its last update. By imposing price constraints on the price oracle usage, SecPLF ensures a PLF only engages a price oracle if the last recorded price falls within a defined threshold, thereby negating the profitability of potential attacks. Our evaluation based on historical market data confirms SecPLF's efficacy in providing high-confidence prevention against arbitrage attacks that arise due to minor price differences. SecPLF delivers proactive protection against oracle manipulation attacks, offering ease of implementation, oracle-agnostic property, and resource and cost efficiency.

Misaligned incentives in secure software development have long been the focus of research in the economics of security. Product liability, a powerful legal framework in other industries, has been largely ineffective for software products until recent times. However, the rapid regulatory responses to recent global cyberattacks by both the United States and the European Union, together with the (relative) success of the General Data Protection Regulation in defining both duty and standard of care for software vendors, may just enable regulators to use liability to re-align incentives for the benefit of the digital society. Specifically, the recently proposed United States National Cybersecurity Strategy shifts responsibility for cyber incidents back to software vendors. In doing so, the strategy also puts forward the concept of the liability waiver: if a software company voluntarily undergoes and passes an IT security audit, its liability is waived. In this paper, we analyze this audit scenario from the aspect of the software vendor. We propose a mechanism where a software vendor should first undergo a repeated auditing process in each stage of which the vendor decides whether to quit early or stay with additional security investment. We show that the optimal strategy for an opt-in vendor is to never quit; and exert cumulative investments in either "one-and-done" or "incremental" manner. We relate the audit mechanism to a liability waiver insurance policy and revealed its effect on reshaping the vendor's risk perception. We also discuss influence of audit quality on the vendor's incentives and pinpoint that a desirable audit rule should be highly accurate and less strict.

Federated learning aims to infer a shared model from private and decentralized data stored locally by multiple clients. Personalized federated learning (PFL) goes one step further by adapting the global model to each client, enhancing the model's fit for different clients. A significant level of personalization is required for highly heterogeneous clients, but can be challenging to achieve especially when they have small datasets. To address this problem, we propose a PFL algorithm named PAC-PFL for learning probabilistic models within a PAC-Bayesian framework that utilizes differential privacy to handle data-dependent priors. Our algorithm collaboratively learns a shared hyper-posterior and regards each client's posterior inference as the personalization step. By establishing and minimizing a generalization bound on the average true risk of clients, PAC-PFL effectively combats over-fitting. PACPFL achieves accurate and well-calibrated predictions, supported by experiments on a dataset of photovoltaic panel power generation, FEMNIST dataset (Caldas et al., 2019), and Dirichlet-partitioned EMNIST dataset (Cohen et al., 2017).

It is often challenging for a user to articulate their preferences accurately in multi-objective decision-making problems. Demonstration-based preference inference (DemoPI) is a promising approach to mitigate this problem. Understanding the behaviours and values of energy customers is an example of a scenario where preference inference can be used to gain insights into the values of energy customers with multiple objectives, e.g. cost and comfort. In this work, we applied the state-of-art DemoPI method, i.e., the dynamic weight-based preference inference (DWPI) algorithm in a multi-objective residential energy consumption setting to infer preferences from energy consumption demonstrations by simulated users following a rule-based approach. According to our experimental results, the DWPI model achieves accurate demonstration-based preference inferring in three scenarios. These advancements enhance the usability and effectiveness of multi-objective reinforcement learning (MORL) in energy management, enabling more intuitive and user-friendly preference specifications, and opening the door for DWPI to be applied in real-world settings.

For a long time, malware classification and analysis have been an arms-race between antivirus systems and malware authors. Though static analysis is vulnerable to evasion techniques, it is still popular as the first line of defense in antivirus systems. But most of the static analyzers failed to gain the trust of practitioners due to their black-box nature. We propose MAlign, a novel static malware family classification approach inspired by genome sequence alignment that can not only classify malware families but can also provide explanations for its decision. MAlign encodes raw bytes using nucleotides and adopts genome sequence alignment approaches to create a signature of a malware family based on the conserved code segments in that family, without any human labor or expertise. We evaluate MAlign on two malware datasets, and it outperforms other state-of-the-art machine learning based malware classifiers (by 4.49% - 0.07%), especially on small datasets (by 19.48% - 1.2%). Furthermore, we explain the generated signatures by MAlign on different malware families illustrating the kinds of insights it can provide to analysts, and show its efficacy as an analysis tool. Additionally, we evaluate its theoretical and empirical robustness against some common attacks. In this paper, we approach static malware analysis from a unique perspective, aiming to strike a delicate balance among performance, interpretability, and robustness.

We present VeriX, a first step towards verified explainability of machine learning models in safety-critical applications. Specifically, our sound and optimal explanations can guarantee prediction invariance against bounded perturbations. We utilise constraint solving techniques together with feature sensitivity ranking to efficiently compute these explanations. We evaluate our approach on image recognition benchmarks and a real-world scenario of autonomous aircraft taxiing.

As an effective strategy, data augmentation (DA) alleviates data scarcity scenarios where deep learning techniques may fail. It is widely applied in computer vision then introduced to natural language processing and achieves improvements in many tasks. One of the main focuses of the DA methods is to improve the diversity of training data, thereby helping the model to better generalize to unseen testing data. In this survey, we frame DA methods into three categories based on the diversity of augmented data, including paraphrasing, noising, and sampling. Our paper sets out to analyze DA methods in detail according to the above categories. Further, we also introduce their applications in NLP tasks as well as the challenges.

Deep neural networks have been able to outperform humans in some cases like image recognition and image classification. However, with the emergence of various novel categories, the ability to continuously widen the learning capability of such networks from limited samples, still remains a challenge. Techniques like Meta-Learning and/or few-shot learning showed promising results, where they can learn or generalize to a novel category/task based on prior knowledge. In this paper, we perform a study of the existing few-shot meta-learning techniques in the computer vision domain based on their method and evaluation metrics. We provide a taxonomy for the techniques and categorize them as data-augmentation, embedding, optimization and semantics based learning for few-shot, one-shot and zero-shot settings. We then describe the seminal work done in each category and discuss their approach towards solving the predicament of learning from few samples. Lastly we provide a comparison of these techniques on the commonly used benchmark datasets: Omniglot, and MiniImagenet, along with a discussion towards the future direction of improving the performance of these techniques towards the final goal of outperforming humans.

In recent years, mobile devices have gained increasingly development with stronger computation capability and larger storage. Some of the computation-intensive machine learning and deep learning tasks can now be run on mobile devices. To take advantage of the resources available on mobile devices and preserve users' privacy, the idea of mobile distributed machine learning is proposed. It uses local hardware resources and local data to solve machine learning sub-problems on mobile devices, and only uploads computation results instead of original data to contribute to the optimization of the global model. This architecture can not only relieve computation and storage burden on servers, but also protect the users' sensitive information. Another benefit is the bandwidth reduction, as various kinds of local data can now participate in the training process without being uploaded to the server. In this paper, we provide a comprehensive survey on recent studies of mobile distributed machine learning. We survey a number of widely-used mobile distributed machine learning methods. We also present an in-depth discussion on the challenges and future directions in this area. We believe that this survey can demonstrate a clear overview of mobile distributed machine learning and provide guidelines on applying mobile distributed machine learning to real applications.

北京阿比特科技有限公司