There has been a lot of effort to construct good quantum codes from the classical error correcting codes. Constructing new quantum codes, using Hermitian self-orthogonal codes, seems to be a difficult problem in general. In this paper, Hermitian self-orthogonal codes are studied from algebraic function fields. Sufficient conditions for the Hermitian self-orthogonality of an algebraic geometry code are presented. New Hermitian self-orthogonal codes are constructed from projective lines, elliptic curves, hyper-elliptic curves, Hermitian curves, and Artin-Schreier curves. In addition, over the projective lines, we construct new families of MDS quantum codes with parameters $[[N,N-2K,K+1]]_q$ under the following conditions: i) $N=t(q-1)+1$ or $t(q-1)+2$ with $t|(q+1)$ and $K=\lfloor\frac{t(q-1)+1}{2t}\rfloor+1$; ii) $(n-1)|(q^2-1)$, $N=n$ or $N=n+1$, $K_0=\lfloor\frac{n+q-1}{q+1}\rfloor$, and $K\ge K_0+1$; iii) $N=tq+1$, $\forall~1\le t\le q$ and $K=\lfloor\frac{tq+q-1}{q+1}\rfloor+1$; iv) $n|(q^2-1)$, $n_2=\frac{n}{\gcd (n,q+1)}$, $\forall~ 1\le t\le \frac{q-1}{n_2}-1$, $N=(t+1)n+2$ and $K=\lfloor \frac{(t+1)n+1+q-1}{q+1}\rfloor+1$.
We investigate the Membership Problem for hypergeometric sequences: given a hypergeometric sequence $\langle u_n \rangle_{n=0}^\infty$ of rational numbers and a target $t \in \mathbb{Q}$, decide whether $t$ occurs in the sequence. We show decidability of this problem under the assumption that in the defining recurrence $p(n)u_{n+1}=q(n)u_n$, the roots of the polynomials $p(x)$ and $q(x)$ are all rational numbers. Our proof relies on bounds on the density of primes in arithmetic progressions. We also observe a relationship between the decidability of the Membership problem (and variants) and the Rohrlich-Lang conjecture in transcendence theory.
In this paper, we provide a framework for constructing entanglement-assisted quantum error-correcting codes (EAQECCs) from classical additive codes over a finite commutative local Frobenius ring. We derive a formula for the minimum number of entanglement qudits required to construct an EAQECC from a linear code over the ring $\mathbb{Z}_{p^s}$. This is used to obtain an exact expression for the minimum number of entanglement qudits required to construct an EAQECC from an additive code over a Galois ring, which significantly extends known results for EAQECCs over finite fields.
We investigate the maximum size of graph families on a common vertex set of cardinality $n$ such that the symmetric difference of the edge sets of any two members of the family satisfies some prescribed condition. We solve the problem completely for infinitely many values of $n$ when the prescribed condition is connectivity or $2$-connectivity, Hamiltonicity or the containment of a spanning star. We give lower and upper bounds when it is the containment of some fixed finite graph concentrating mostly on the case when this graph is the $3$-cycle or just any odd cycle. The paper ends with a collection of open problems.
A fundamental computational problem is to find a shortest non-zero vector in Euclidean lattices, a problem known as the Shortest Vector Problem (SVP). This problem is believed to be hard even on quantum computers and thus plays a pivotal role in post-quantum cryptography. In this work we explore how (efficiently) Noisy Intermediate Scale Quantum (NISQ) devices may be used to solve SVP. Specifically, we map the problem to that of finding the ground state of a suitable Hamiltonian. In particular, (i) we establish new bounds for lattice enumeration, this allows us to obtain new bounds (resp.~estimates) for the number of qubits required per dimension for any lattices (resp.~random q-ary lattices) to solve SVP; (ii) we exclude the zero vector from the optimization space by proposing (a) a different classical optimisation loop or alternatively (b) a new mapping to the Hamiltonian. These improvements allow us to solve SVP in dimension up to 28 in a quantum emulation, significantly more than what was previously achieved, even for special cases. Finally, we extrapolate the size of NISQ devices that is required to be able to solve instances of lattices that are hard even for the best classical algorithms and find that with approximately $10^3$ noisy qubits such instances can be tackled.
This note provides some new inequalities and approximations for beta distributions, including exponential tail inequalities, inequalities of Hoeffding type, and Gaussian tail inequalities and approximations. Some of the results are extended to Gamma distributions.
Recently, codes in the sum-rank metric attracted attention due to several applications in e.g. multishot network coding, distributed storage and quantum-resistant cryptography. The sum-rank analogs of Reed-Solomon and Gabidulin codes are linearized Reed-Solomon codes. We show how to construct $h$-folded linearized Reed-Solomon (FLRS) codes and derive an interpolation-based decoding scheme that is capable of correcting sum-rank errors beyond the unique decoding radius. The presented decoder can be used for either list or probabilistic unique decoding and requires at most $\mathcal{O}(sn^2)$ operations in $\mathbb{F}_{q^m}$, where $s \leq h$ is an interpolation parameter and $n$ denotes the length of the unfolded code. We derive a heuristic upper bound on the failure probability of the probabilistic unique decoder and verify the results via Monte Carlo simulations.
A triangle in a hypergraph $\mathcal{H}$ is a set of three distinct edges $e, f, g\in\mathcal{H}$ and three distinct vertices $u, v, w\in V(\mathcal{H})$ such that $\{u, v\}\subseteq e$, $\{v, w\}\subseteq f$, $\{w, u\}\subseteq g$ and $\{u, v, w\}\cap e\cap f\cap g=\emptyset$. Johansson proved in 1996 that $\chi(G)=\mathcal{O}(\Delta/\log\Delta)$ for any triangle-free graph $G$ with maximum degree $\Delta$. Cooper and Mubayi later generalized the Johansson's theorem to all rank $3$ hypergraphs. In this paper we provide a common generalization of both these results for all hypergraphs, showing that if $\mathcal{H}$ is a rank $k$, triangle-free hypergraph, then the list chromatic number \[ \chi_{\ell}(\mathcal{H})\leq \mathcal{O}\left(\max_{2\leq \ell \leq k} \left\{\left( \frac{\Delta_{\ell}}{\log \Delta_{\ell}} \right)^{\frac{1}{\ell-1}} \right\}\right), \] where $\Delta_{\ell}$ is the maximum $\ell$-degree of $\mathcal{H}$. The result is sharp apart from the constant. Moreover, our result implies, generalizes and improves several earlier results on the chromatic number and also independence number of hypergraphs, while its proof is based on a different approach than prior works in hypergraphs (and therefore provides alternative proofs to them). In particular, as an application, we establish a bound on chromatic number of sparse hypergraphs in which each vertex is contained in few triangles, and thus extend results of Alon, Krivelevich and Sudakov, and Cooper and Mubayi from hypergraphs of rank 2 and 3, respectively, to all hypergraphs.
We define and study a class of Reed-Muller type error-correcting codes obtained from elementary symmetric functions in finitely many variables. We determine the code parameters and higher weight spectra in the simplest cases.
Algebraic methods for the design of series of maximum distance separable (MDS) linear block and convolutional codes to required specifications and types are presented. Algorithms are given to design codes to required rate and required error-correcting capability and required types. Infinite series of block codes with rate approaching a given rational $R$ with $0<R<1$ and relative distance over length approaching $(1-R)$ are designed. These can be designed over fields of given characteristic $p$ or over fields of prime order and can be specified to be of a particular type such as (i) dual-containing under Euclidean inner product, (ii) dual-containing under Hermitian inner product, (iii) quantum error-correcting, (iv) linear complementary dual (LCD). Convolutional codes to required rate and distance and infinite series of convolutional codes with rate approaching a given rational $R$ and distance over length approaching $2(1-R)$ are designed. The designs are algebraic and properties, including distances, are shown algebraically. Algebraic explicit efficient decoding methods are referenced.
In 2017, Krenn reported that certain problems related to the perfect matchings and colourings of graphs emerge out of studying the constructability of general quantum states using modern photonic technologies. He realized that if we can prove that the \emph{weighted matching index} of a graph, a parameter defined in terms of perfect matchings and colourings of the graph is at most 2, that could lead to exciting insights on the potential of resources of quantum inference. Motivated by this, he conjectured that the {weighted matching index} of any graph is at most 2. The first result on this conjecture was by Bogdanov, who proved that the \emph{(unweighted) matching index} of graphs (non-isomorphic to $K_4$) is at most 2, thus classifying graphs non-isomorphic to $K_4$ into Type 0, Type 1 and Type 2. By definition, the weighted matching index of Type 0 graphs is 0. We give a structural characterization for Type 2 graphs, using which we settle Krenn's conjecture for Type 2 graphs. Using this characterization, we provide a simple $O(|V||E|)$ time algorithm to find the unweighted matching index of any graph. In view of our work, Krenn's conjecture remains to be proved only for Type 1 graphs. We give upper bounds for the weighted matching index in terms of connectivity parameters for such graphs. Using these bounds, for a slightly simplified version, we settle Krenn's conjecture for the class of graphs with vertex connectivity at most 2 and the class of graphs with maximum degree at most 4. Krenn has been publicizing his conjecture in various ways since 2017. He has even declared a reward for a resolution of his conjecture. We hope that this article will popularize the problem among computer scientists.