Monitoring the health status of patients and predicting mortality in advance is vital for providing patients with timely care and treatment. Massive medical signs in electronic health records (EHR) are fitted into advanced machine learning models to make predictions. However, the data-quality problem of original clinical signs is less discussed in the literature. Based on an in-depth measurement of the missing rate and correlation score across various medical signs and a large amount of patient hospital admission records, we discovered the comprehensive missing rate is extremely high, and a large number of useless signs could hurt the performance of prediction models. Then we concluded that only improving data-quality could improve the baseline accuracy of different prediction algorithms. We designed MEDLENS, with an automatic vital medical signs selection approach via statistics and a flexible interpolation approach for high missing rate time series. After augmenting the data-quality of original medical signs, MEDLENS applies ensemble classifiers to boost the accuracy and reduce the computation overhead at the same time. It achieves a very high accuracy performance of 0.96% AUC-ROC and 0.81% AUC-PR, which exceeds the previous benchmark.
Learning with rejection is a prototypical model for studying the interaction between humans and AI on prediction tasks. The model has two components, a predictor and a rejector. Upon the arrival of a sample, the rejector first decides whether to accept it; if accepted, the predictor fulfills the prediction task, and if rejected, the prediction will be deferred to humans. The learning problem requires learning a predictor and a rejector simultaneously. This changes the structure of the conventional loss function and often results in non-convexity and inconsistency issues. For the classification with rejection problem, several works develop surrogate losses for the jointly learning with provable consistency guarantees; in parallel, there has been less work for the regression counterpart. We study the regression with rejection (RwR) problem and investigate the no-rejection learning strategy which treats the RwR problem as a standard regression task to learn the predictor. We establish that the suboptimality of the no-rejection learning strategy observed in the literature can be mitigated by enlarging the function class of the predictor. Then we introduce the truncated loss to single out the learning for the predictor and we show that a consistent surrogate property can be established for the predictor individually in an easier way than for the predictor and the rejector jointly. Our findings advocate for a two-step learning procedure that first uses all the data to learn the predictor and then calibrates the prediction loss for the rejector. It is better aligned with the common intuition that more data samples will lead to a better predictor and it calls for more efforts on a better design of calibration algorithms for learning the rejector. While our discussions mainly focus on the regression problem, the theoretical results and insights generalize to the classification problem as well.
Traditionally, data selection has been studied in settings where all samples from prospective sources are fully revealed to a machine learning developer. However, in practical data exchange scenarios, data providers often reveal only a limited subset of samples before an acquisition decision is made. Recently, there have been efforts to fit scaling laws that predict model performance at any size and data source composition using the limited available samples. However, these scaling functions are black-box, computationally expensive to fit, highly susceptible to overfitting, or/and difficult to optimize for data selection. This paper proposes a framework called <projektor>, which predicts model performance and supports data selection decisions based on partial samples of prospective data sources. Our approach distinguishes itself from existing work by introducing a novel *two-stage* performance inference process. In the first stage, we leverage the Optimal Transport distance to predict the model's performance for any data mixture ratio within the range of disclosed data sizes. In the second stage, we extrapolate the performance to larger undisclosed data sizes based on a novel parameter-free mapping technique inspired by neural scaling laws. We further derive an efficient gradient-based method to select data sources based on the projected model performance. Evaluation over a diverse range of applications demonstrates that <projektor> significantly improves existing performance scaling approaches in terms of both the accuracy of performance inference and the computation costs associated with constructing the performance predictor. Also, <projektor> outperforms by a wide margin in data selection effectiveness compared to a range of other off-the-shelf solutions.
The demand of computational resources for the modeling process increases as the scale of the datasets does, since traditional approaches for regression involve inverting huge data matrices. The main problem relies on the large data size, and so a standard approach is subsampling that aims at obtaining the most informative portion of the big data. In the current paper, we explore an existing approach based on leverage scores, proposed for subdata selection in linear model discrimination. Our objective is to propose the aforementioned approach for selecting the most informative data points to estimate unknown parameters in both the first-order linear model and a model with interactions. We conclude that the approach based on leverage scores improves existing approaches, providing simulation experiments as well as a real data application.
Matching addresses is a critical task for companies and post offices involved in the processing and delivery of packages. The ramifications of incorrectly delivering a package to the wrong recipient are numerous, ranging from harm to the company's reputation to economic and environmental costs. This research introduces a deep learning-based model designed to increase the efficiency of address matching for Portuguese addresses. The model comprises two parts: (i) a bi-encoder, which is fine-tuned to create meaningful embeddings of Portuguese postal addresses, utilized to retrieve the top 10 likely matches of the un-normalized target address from a normalized database, and (ii) a cross-encoder, which is fine-tuned to accurately rerank the 10 addresses obtained by the bi-encoder. The model has been tested on a real-case scenario of Portuguese addresses and exhibits a high degree of accuracy, exceeding 95% at the door level. When utilized with GPU computations, the inference speed is about 4.5 times quicker than other traditional approaches such as BM25. An implementation of this system in a real-world scenario would substantially increase the effectiveness of the distribution process. Such an implementation is currently under investigation.
Despite its clinical utility, medical image segmentation (MIS) remains a daunting task due to images' inherent complexity and variability. Vision transformers (ViTs) have recently emerged as a promising solution to improve MIS; however, they require larger training datasets than convolutional neural networks. To overcome this obstacle, data-efficient ViTs were proposed, but they are typically trained using a single source of data, which overlooks the valuable knowledge that could be leveraged from other available datasets. Naivly combining datasets from different domains can result in negative knowledge transfer (NKT), i.e., a decrease in model performance on some domains with non-negligible inter-domain heterogeneity. In this paper, we propose MDViT, the first multi-domain ViT that includes domain adapters to mitigate data-hunger and combat NKT by adaptively exploiting knowledge in multiple small data resources (domains). Further, to enhance representation learning across domains, we integrate a mutual knowledge distillation paradigm that transfers knowledge between a universal network (spanning all the domains) and auxiliary domain-specific branches. Experiments on 4 skin lesion segmentation datasets show that MDViT outperforms state-of-the-art algorithms, with superior segmentation performance and a fixed model size, at inference time, even as more domains are added. Our code is available at //github.com/siyi-wind/MDViT.
Zero-shot medical image classification is a critical process in real-world scenarios where we have limited access to all possible diseases or large-scale annotated data. It involves computing similarity scores between a query medical image and possible disease categories to determine the diagnostic result. Recent advances in pretrained vision-language models (VLMs) such as CLIP have shown great performance for zero-shot natural image recognition and exhibit benefits in medical applications. However, an explainable zero-shot medical image recognition framework with promising performance is yet under development. In this paper, we propose a novel CLIP-based zero-shot medical image classification framework supplemented with ChatGPT for explainable diagnosis, mimicking the diagnostic process performed by human experts. The key idea is to query large language models (LLMs) with category names to automatically generate additional cues and knowledge, such as disease symptoms or descriptions other than a single category name, to help provide more accurate and explainable diagnosis in CLIP. We further design specific prompts to enhance the quality of generated texts by ChatGPT that describe visual medical features. Extensive results on one private dataset and four public datasets along with detailed analysis demonstrate the effectiveness and explainability of our training-free zero-shot diagnosis pipeline, corroborating the great potential of VLMs and LLMs for medical applications.
Extrapolation is crucial in many statistical and machine learning applications, as it is common to encounter test data outside the training support. However, extrapolation is a considerable challenge for nonlinear models. Conventional models typically struggle in this regard: while tree ensembles provide a constant prediction beyond the support, neural network predictions tend to become uncontrollable. This work aims at providing a nonlinear regression methodology whose reliability does not break down immediately at the boundary of the training support. Our primary contribution is a new method called `engression' which, at its core, is a distributional regression technique for pre-additive noise models, where the noise is added to the covariates before applying a nonlinear transformation. Our experimental results indicate that this model is typically suitable for many real data sets. We show that engression can successfully perform extrapolation under some assumptions such as a strictly monotone function class, whereas traditional regression approaches such as least-squares regression and quantile regression fall short under the same assumptions. We establish the advantages of engression over existing approaches in terms of extrapolation, showing that engression consistently provides a meaningful improvement. Our empirical results, from both simulated and real data, validate these findings, highlighting the effectiveness of the engression method. The software implementations of engression are available in both R and Python.
Variable selection is a procedure to attain the truly important predictors from inputs. Complex nonlinear dependencies and strong coupling pose great challenges for variable selection in high-dimensional data. In addition, real-world applications have increased demands for interpretability of the selection process. A pragmatic approach should not only attain the most predictive covariates, but also provide ample and easy-to-understand grounds for removing certain covariates. In view of these requirements, this paper puts forward an approach for transparent and nonlinear variable selection. In order to transparently decouple information within the input predictors, a three-step heuristic search is designed, via which the input predictors are grouped into four subsets: the relevant to be selected, and the uninformative, redundant, and conditionally independent to be removed. A nonlinear partial correlation coefficient is introduced to better identify the predictors which have nonlinear functional dependence with the response. The proposed method is model-free and the selected subset can be competent input for commonly used predictive models. Experiments demonstrate the superior performance of the proposed method against the state-of-the-art baselines in terms of prediction accuracy and model interpretability.
This paper focuses on the expected difference in borrower's repayment when there is a change in the lender's credit decisions. Classical estimators overlook the confounding effects and hence the estimation error can be magnificent. As such, we propose another approach to construct the estimators such that the error can be greatly reduced. The proposed estimators are shown to be unbiased, consistent, and robust through a combination of theoretical analysis and numerical testing. Moreover, we compare the power of estimating the causal quantities between the classical estimators and the proposed estimators. The comparison is tested across a wide range of models, including linear regression models, tree-based models, and neural network-based models, under different simulated datasets that exhibit different levels of causality, different degrees of nonlinearity, and different distributional properties. Most importantly, we apply our approaches to a large observational dataset provided by a global technology firm that operates in both the e-commerce and the lending business. We find that the relative reduction of estimation error is strikingly substantial if the causal effects are accounted for correctly.
Recent advances in 3D fully convolutional networks (FCN) have made it feasible to produce dense voxel-wise predictions of volumetric images. In this work, we show that a multi-class 3D FCN trained on manually labeled CT scans of several anatomical structures (ranging from the large organs to thin vessels) can achieve competitive segmentation results, while avoiding the need for handcrafting features or training class-specific models. To this end, we propose a two-stage, coarse-to-fine approach that will first use a 3D FCN to roughly define a candidate region, which will then be used as input to a second 3D FCN. This reduces the number of voxels the second FCN has to classify to ~10% and allows it to focus on more detailed segmentation of the organs and vessels. We utilize training and validation sets consisting of 331 clinical CT images and test our models on a completely unseen data collection acquired at a different hospital that includes 150 CT scans, targeting three anatomical organs (liver, spleen, and pancreas). In challenging organs such as the pancreas, our cascaded approach improves the mean Dice score from 68.5 to 82.2%, achieving the highest reported average score on this dataset. We compare with a 2D FCN method on a separate dataset of 240 CT scans with 18 classes and achieve a significantly higher performance in small organs and vessels. Furthermore, we explore fine-tuning our models to different datasets. Our experiments illustrate the promise and robustness of current 3D FCN based semantic segmentation of medical images, achieving state-of-the-art results. Our code and trained models are available for download: //github.com/holgerroth/3Dunet_abdomen_cascade.