亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Large language models and AI chatbots have been at the forefront of democratizing artificial intelligence. However, the releases of ChatGPT and other similar tools have been followed by growing concerns regarding the difficulty of controlling large language models and their outputs. Currently, we are witnessing a cat-and-mouse game where users attempt to misuse the models with a novel attack called prompt injections. In contrast, the developers attempt to discover the vulnerabilities and block the attacks simultaneously. In this paper, we provide an overview of these emergent threats and present a categorization of prompt injections, which can guide future research on prompt injections and act as a checklist of vulnerabilities in the development of LLM interfaces. Moreover, based on previous literature and our own empirical research, we discuss the implications of prompt injections to LLM end users, developers, and researchers.

相關內容

大語言模型是基于海量文本數據訓練的深度學習模型。它不僅能夠生成自然語言文本,還能夠深入理解文本含義,處理各種自然語言任務,如文本摘要、問答、翻譯等。2023年,大語言模型及其在人工智能領域的應用已成為全球科技研究的熱點,其在規模上的增長尤為引人注目,參數量已從最初的十幾億躍升到如今的一萬億。參數量的提升使得模型能夠更加精細地捕捉人類語言微妙之處,更加深入地理解人類語言的復雜性。在過去的一年里,大語言模型在吸納新知識、分解復雜任務以及圖文對齊等多方面都有顯著提升。隨著技術的不斷成熟,它將不斷拓展其應用范圍,為人類提供更加智能化和個性化的服務,進一步改善人們的生活和生產方式。

Advances in Deep Learning have made possible reliable landmark tracking of human bodies and faces that can be used for a variety of tasks. We test a recent Computer Vision solution, MediaPipe Holistic (MPH), to find out if its tracking of the facial features is reliable enough for a linguistic analysis of data from sign languages, and compare it to an older solution (OpenFace, OF). We use an existing data set of sentences in Kazakh-Russian Sign Language and a newly created small data set of videos with head tilts and eyebrow movements. We find that MPH does not perform well enough for linguistic analysis of eyebrow movement -- but in a different way from OF, which is also performing poorly without correction. We reiterate a previous proposal to train additional correction models to overcome these limitations.

Powerful generative Large Language Models (LLMs) are becoming popular tools amongst the general public as question-answering systems, and are being utilised by vulnerable groups such as children. With children increasingly interacting with these tools, it is imperative for researchers to scrutinise the safety of LLMs, especially for applications that could lead to serious outcomes, such as online child safety queries. In this paper, the efficacy of LLMs for online grooming prevention is explored both for identifying and avoiding grooming through advice generation, and the impact of prompt design on model performance is investigated by varying the provided context and prompt specificity. In results reflecting over 6,000 LLM interactions, we find that no models were clearly appropriate for online grooming prevention, with an observed lack of consistency in behaviours, and potential for harmful answer generation, especially from open-source models. We outline where and how models fall short, providing suggestions for improvement, and identify prompt designs that heavily altered model performance in troubling ways, with findings that can be used to inform best practice usage guides.

Large language models (LLMs) have achieved remarkable performance in various evaluation benchmarks. However, concerns are raised about potential data contamination in their considerable volume of training corpus. Moreover, the static nature and fixed complexity of current benchmarks may inadequately gauge the advancing capabilities of LLMs. In this paper, we introduce DyVal, a general and flexible protocol for dynamic evaluation of LLMs. Based on our framework, we build graph-informed DyVal by leveraging the structural advantage of directed acyclic graphs to dynamically generate evaluation samples with controllable complexities. DyVal generates challenging evaluation sets on reasoning tasks including mathematics, logical reasoning, and algorithm problems. We evaluate various LLMs ranging from Flan-T5-large to GPT-3.5-Turbo and GPT-4. Experiments show that LLMs perform worse in DyVal-generated evaluation samples with different complexities, highlighting the significance of dynamic evaluation. We also analyze the failure cases and results of different prompting methods. Moreover, DyVal-generated samples are not only evaluation sets, but also helpful data for fine-tuning to improve the performance of LLMs on existing benchmarks. We hope that DyVal can shed light on future evaluation research of LLMs. Code is available at: //github.com/microsoft/promptbench.

Large language models (LLMs) like ChatGPT demonstrate the remarkable progress of artificial intelligence. However, their tendency to hallucinate -- generate plausible but false information -- poses a significant challenge. This issue is critical, as seen in recent court cases where ChatGPT's use led to citations of non-existent legal rulings. This paper explores how Retrieval-Augmented Generation (RAG) can counter hallucinations by integrating external knowledge with prompts. We empirically evaluate RAG against standard LLMs using prompts designed to induce hallucinations. Our results show that RAG increases accuracy in some cases, but can still be misled when prompts directly contradict the model's pre-trained understanding. These findings highlight the complex nature of hallucinations and the need for more robust solutions to ensure LLM reliability in real-world applications. We offer practical recommendations for RAG deployment and discuss implications for the development of more trustworthy LLMs.

Large language models (LLMs) and generative artificial intelligence (GenAI) constitute paradigm shifts in cybersecurity that present hitherto unseen challenges as well as opportunities. In examining the state-of-the-art application of GenAI in cybersecurity, this work highlights how models like Google's Gemini and ChatGPT-4 potentially enhance security protocols, vulnerability assessment, and threat identification. Our research highlights the significance of a novel approach that employs LLMs to identify and eliminate sophisticated cyber threats. This paper presents a thorough assessment of LLMs' ability to produce important security insights, hence broadening the potential applications of AI-driven cybersecurity solutions. Our findings demonstrate the significance of GenAI in improving digital security. It offers recommendations for further investigations into the intricate relationship between cybersecurity requirements and artificial intelligence's potential.

In the rapidly evolving landscape of artificial intelligence (AI), generative large language models (LLMs) stand at the forefront, revolutionizing how we interact with our data. However, the computational intensity and memory consumption of deploying these models present substantial challenges in terms of serving efficiency, particularly in scenarios demanding low latency and high throughput. This survey addresses the imperative need for efficient LLM serving methodologies from a machine learning system (MLSys) research perspective, standing at the crux of advanced AI innovations and practical system optimizations. We provide in-depth analysis, covering a spectrum of solutions, ranging from cutting-edge algorithmic modifications to groundbreaking changes in system designs. The survey aims to provide a comprehensive understanding of the current state and future directions in efficient LLM serving, offering valuable insights for researchers and practitioners in overcoming the barriers of effective LLM deployment, thereby reshaping the future of AI.

The advent of large language models marks a revolutionary breakthrough in artificial intelligence. With the unprecedented scale of training and model parameters, the capability of large language models has been dramatically improved, leading to human-like performances in understanding, language synthesizing, and common-sense reasoning, etc. Such a major leap-forward in general AI capacity will change the pattern of how personalization is conducted. For one thing, it will reform the way of interaction between humans and personalization systems. Instead of being a passive medium of information filtering, large language models present the foundation for active user engagement. On top of such a new foundation, user requests can be proactively explored, and user's required information can be delivered in a natural and explainable way. For another thing, it will also considerably expand the scope of personalization, making it grow from the sole function of collecting personalized information to the compound function of providing personalized services. By leveraging large language models as general-purpose interface, the personalization systems may compile user requests into plans, calls the functions of external tools to execute the plans, and integrate the tools' outputs to complete the end-to-end personalization tasks. Today, large language models are still being developed, whereas the application in personalization is largely unexplored. Therefore, we consider it to be the right time to review the challenges in personalization and the opportunities to address them with LLMs. In particular, we dedicate this perspective paper to the discussion of the following aspects: the development and challenges for the existing personalization system, the newly emerged capabilities of large language models, and the potential ways of making use of large language models for personalization.

Recent developments in image classification and natural language processing, coupled with the rapid growth in social media usage, have enabled fundamental advances in detecting breaking events around the world in real-time. Emergency response is one such area that stands to gain from these advances. By processing billions of texts and images a minute, events can be automatically detected to enable emergency response workers to better assess rapidly evolving situations and deploy resources accordingly. To date, most event detection techniques in this area have focused on image-only or text-only approaches, limiting detection performance and impacting the quality of information delivered to crisis response teams. In this paper, we present a new multimodal fusion method that leverages both images and texts as input. In particular, we introduce a cross-attention module that can filter uninformative and misleading components from weak modalities on a sample by sample basis. In addition, we employ a multimodal graph-based approach to stochastically transition between embeddings of different multimodal pairs during training to better regularize the learning process as well as dealing with limited training data by constructing new matched pairs from different samples. We show that our method outperforms the unimodal approaches and strong multimodal baselines by a large margin on three crisis-related tasks.

Deep neural networks (DNNs) are successful in many computer vision tasks. However, the most accurate DNNs require millions of parameters and operations, making them energy, computation and memory intensive. This impedes the deployment of large DNNs in low-power devices with limited compute resources. Recent research improves DNN models by reducing the memory requirement, energy consumption, and number of operations without significantly decreasing the accuracy. This paper surveys the progress of low-power deep learning and computer vision, specifically in regards to inference, and discusses the methods for compacting and accelerating DNN models. The techniques can be divided into four major categories: (1) parameter quantization and pruning, (2) compressed convolutional filters and matrix factorization, (3) network architecture search, and (4) knowledge distillation. We analyze the accuracy, advantages, disadvantages, and potential solutions to the problems with the techniques in each category. We also discuss new evaluation metrics as a guideline for future research.

Deep convolutional neural networks (CNNs) have recently achieved great success in many visual recognition tasks. However, existing deep neural network models are computationally expensive and memory intensive, hindering their deployment in devices with low memory resources or in applications with strict latency requirements. Therefore, a natural thought is to perform model compression and acceleration in deep networks without significantly decreasing the model performance. During the past few years, tremendous progress has been made in this area. In this paper, we survey the recent advanced techniques for compacting and accelerating CNNs model developed. These techniques are roughly categorized into four schemes: parameter pruning and sharing, low-rank factorization, transferred/compact convolutional filters, and knowledge distillation. Methods of parameter pruning and sharing will be described at the beginning, after that the other techniques will be introduced. For each scheme, we provide insightful analysis regarding the performance, related applications, advantages, and drawbacks etc. Then we will go through a few very recent additional successful methods, for example, dynamic capacity networks and stochastic depths networks. After that, we survey the evaluation matrix, the main datasets used for evaluating the model performance and recent benchmarking efforts. Finally, we conclude this paper, discuss remaining challenges and possible directions on this topic.

北京阿比特科技有限公司