亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Recent advances in machine learning, particularly deep learning, have enabled autonomous systems to perceive and comprehend objects and their environments in a perceptual subsymbolic manner. These systems can now perform object detection, sensor data fusion, and language understanding tasks. However, there is a growing need to enhance these systems to understand objects and their environments more conceptually and symbolically. It is essential to consider both the explicit teaching provided by humans (e.g., describing a situation or explaining how to act) and the implicit teaching obtained by observing human behavior (e.g., through the system's sensors) to achieve this level of powerful artificial intelligence. Thus, the system must be designed with multimodal input and output capabilities to support implicit and explicit interaction models. In this position paper, we argue for considering both types of inputs, as well as human-in-the-loop and incremental learning techniques, for advancing the field of artificial intelligence and enabling autonomous systems to learn like humans. We propose several hypotheses and design guidelines and highlight a use case from related work to achieve this goal.

相關內容

IFIP TC13 Conference on Human-Computer Interaction是人機交互領域的研究者和實踐者展示其工作的重要平臺。多年來,這些會議吸引了來自幾個國家和文化的研究人員。官網鏈接: · 線性的 · · 泛函 · 近似 ·
2023 年 10 月 27 日

While numerous works have focused on devising efficient algorithms for reinforcement learning (RL) with uniformly bounded rewards, it remains an open question whether sample or time-efficient algorithms for RL with large state-action space exist when the rewards are \emph{heavy-tailed}, i.e., with only finite $(1+\epsilon)$-th moments for some $\epsilon\in(0,1]$. In this work, we address the challenge of such rewards in RL with linear function approximation. We first design an algorithm, \textsc{Heavy-OFUL}, for heavy-tailed linear bandits, achieving an \emph{instance-dependent} $T$-round regret of $\tilde{O}\big(d T^{\frac{1-\epsilon}{2(1+\epsilon)}} \sqrt{\sum_{t=1}^T \nu_t^2} + d T^{\frac{1-\epsilon}{2(1+\epsilon)}}\big)$, the \emph{first} of this kind. Here, $d$ is the feature dimension, and $\nu_t^{1+\epsilon}$ is the $(1+\epsilon)$-th central moment of the reward at the $t$-th round. We further show the above bound is minimax optimal when applied to the worst-case instances in stochastic and deterministic linear bandits. We then extend this algorithm to the RL settings with linear function approximation. Our algorithm, termed as \textsc{Heavy-LSVI-UCB}, achieves the \emph{first} computationally efficient \emph{instance-dependent} $K$-episode regret of $\tilde{O}(d \sqrt{H \mathcal{U}^*} K^\frac{1}{1+\epsilon} + d \sqrt{H \mathcal{V}^* K})$. Here, $H$ is length of the episode, and $\mathcal{U}^*, \mathcal{V}^*$ are instance-dependent quantities scaling with the central moment of reward and value functions, respectively. We also provide a matching minimax lower bound $\Omega(d H K^{\frac{1}{1+\epsilon}} + d \sqrt{H^3 K})$ to demonstrate the optimality of our algorithm in the worst case. Our result is achieved via a novel robust self-normalized concentration inequality that may be of independent interest in handling heavy-tailed noise in general online regression problems.

As autonomous driving technology matures, end-to-end methodologies have emerged as a leading strategy, promising seamless integration from perception to control via deep learning. However, existing systems grapple with challenges such as unexpected open set environments and the complexity of black-box models. At the same time, the evolution of deep learning introduces larger, multimodal foundational models, offering multi-modal visual and textual understanding. In this paper, we harness these multimodal foundation models to enhance the robustness and adaptability of autonomous driving systems, enabling out-of-distribution, end-to-end, multimodal, and more explainable autonomy. Specifically, we present an approach to apply end-to-end open-set (any environment/scene) autonomous driving that is capable of providing driving decisions from representations queryable by image and text. To do so, we introduce a method to extract nuanced spatial (pixel/patch-aligned) features from transformers to enable the encapsulation of both spatial and semantic features. Our approach (i) demonstrates unparalleled results in diverse tests while achieving significantly greater robustness in out-of-distribution situations, and (ii) allows the incorporation of latent space simulation (via text) for improved training (data augmentation via text) and policy debugging. We encourage the reader to check our explainer video at //www.youtube.com/watch?v=4n-DJf8vXxo&feature=youtu.be and to view the code and demos on our project webpage at //drive-anywhere.github.io/.

Transformer-based speech self-supervised learning (SSL) models, such as HuBERT, show surprising performance in various speech processing tasks. However, huge number of parameters in speech SSL models necessitate the compression to a more compact model for wider usage in academia or small companies. In this study, we suggest to reuse attention maps across the Transformer layers, so as to remove key and query parameters while retaining the number of layers. Furthermore, we propose a novel masking distillation strategy to improve the student model's speech representation quality. We extend the distillation loss to utilize both masked and unmasked speech frames to fully leverage the teacher model's high-quality representation. Our universal compression strategy yields the student model that achieves phoneme error rate (PER) of 7.72% and word error rate (WER) of 9.96% on the SUPERB benchmark.

Federated learning, a decentralized approach to machine learning, faces significant challenges such as extensive communication overheads, slow convergence, and unstable improvements. These challenges primarily stem from the gradient variance due to heterogeneous client data distributions. To address this, we introduce a novel Networked Control Variates (FedNCV) framework for Federated Learning. We adopt the REINFORCE Leave-One-Out (RLOO) as a fundamental control variate unit in the FedNCV framework, implemented at both client and server levels. At the client level, the RLOO control variate is employed to optimize local gradient updates, mitigating the variance introduced by data samples. Once relayed to the server, the RLOO-based estimator further provides an unbiased and low-variance aggregated gradient, leading to robust global updates. This dual-side application is formalized as a linear combination of composite control variates. We provide a mathematical expression capturing this integration of double control variates within FedNCV and present three theoretical results with corresponding proofs. This unique dual structure equips FedNCV to address data heterogeneity and scalability issues, thus potentially paving the way for large-scale applications. Moreover, we tested FedNCV on six diverse datasets under a Dirichlet distribution with {\alpha} = 0.1, and benchmarked its performance against six SOTA methods, demonstrating its superiority.

Due to the limited availability of data, existing few-shot learning methods trained from scratch fail to achieve satisfactory performance. In contrast, large-scale pre-trained models such as CLIP demonstrate remarkable few-shot and zero-shot capabilities. To enhance the performance of pre-trained models for downstream tasks, fine-tuning the model on downstream data is frequently necessary. However, fine-tuning the pre-trained model leads to a decrease in its generalizability in the presence of distribution shift, while the limited number of samples in few-shot learning makes the model highly susceptible to overfitting. Consequently, existing methods for fine-tuning few-shot learning primarily focus on fine-tuning the model's classification head or introducing additional structure. In this paper, we introduce a fine-tuning approach termed Feature Discrimination Alignment (FD-Align). Our method aims to bolster the model's generalizability by preserving the consistency of spurious features across the fine-tuning process. Extensive experimental results validate the efficacy of our approach for both ID and OOD tasks. Once fine-tuned, the model can seamlessly integrate with existing methods, leading to performance improvements. Our code can be found in //github.com/skingorz/FD-Align.

This paper presents novel methodologies for conducting practical differentially private (DP) estimation and inference in high-dimensional linear regression. We start by proposing a differentially private Bayesian Information Criterion (BIC) for selecting the unknown sparsity parameter in DP-Lasso, eliminating the need for prior knowledge of model sparsity, a requisite in the existing literature. Then we propose a differentially private debiased LASSO algorithm that enables privacy-preserving inference on regression parameters. Our proposed method enables accurate and private inference on the regression parameters by leveraging the inherent sparsity of high-dimensional linear regression models. Additionally, we address the issue of multiple testing in high-dimensional linear regression by introducing a differentially private multiple testing procedure that controls the false discovery rate (FDR). This allows for accurate and privacy-preserving identification of significant predictors in the regression model. Through extensive simulations and real data analysis, we demonstrate the efficacy of our proposed methods in conducting inference for high-dimensional linear models while safeguarding privacy and controlling the FDR.

Pre-trained Language Models (PLMs) which are trained on large text corpus via self-supervised learning method, have yielded promising performance on various tasks in Natural Language Processing (NLP). However, though PLMs with huge parameters can effectively possess rich knowledge learned from massive training text and benefit downstream tasks at the fine-tuning stage, they still have some limitations such as poor reasoning ability due to the lack of external knowledge. Research has been dedicated to incorporating knowledge into PLMs to tackle these issues. In this paper, we present a comprehensive review of Knowledge-Enhanced Pre-trained Language Models (KE-PLMs) to provide a clear insight into this thriving field. We introduce appropriate taxonomies respectively for Natural Language Understanding (NLU) and Natural Language Generation (NLG) to highlight these two main tasks of NLP. For NLU, we divide the types of knowledge into four categories: linguistic knowledge, text knowledge, knowledge graph (KG), and rule knowledge. The KE-PLMs for NLG are categorized into KG-based and retrieval-based methods. Finally, we point out some promising future directions of KE-PLMs.

The rapid development of deep learning has made a great progress in segmentation, one of the fundamental tasks of computer vision. However, the current segmentation algorithms mostly rely on the availability of pixel-level annotations, which are often expensive, tedious, and laborious. To alleviate this burden, the past years have witnessed an increasing attention in building label-efficient, deep-learning-based segmentation algorithms. This paper offers a comprehensive review on label-efficient segmentation methods. To this end, we first develop a taxonomy to organize these methods according to the supervision provided by different types of weak labels (including no supervision, coarse supervision, incomplete supervision and noisy supervision) and supplemented by the types of segmentation problems (including semantic segmentation, instance segmentation and panoptic segmentation). Next, we summarize the existing label-efficient segmentation methods from a unified perspective that discusses an important question: how to bridge the gap between weak supervision and dense prediction -- the current methods are mostly based on heuristic priors, such as cross-pixel similarity, cross-label constraint, cross-view consistency, cross-image relation, etc. Finally, we share our opinions about the future research directions for label-efficient deep segmentation.

Most deep learning-based models for speech enhancement have mainly focused on estimating the magnitude of spectrogram while reusing the phase from noisy speech for reconstruction. This is due to the difficulty of estimating the phase of clean speech. To improve speech enhancement performance, we tackle the phase estimation problem in three ways. First, we propose Deep Complex U-Net, an advanced U-Net structured model incorporating well-defined complex-valued building blocks to deal with complex-valued spectrograms. Second, we propose a polar coordinate-wise complex-valued masking method to reflect the distribution of complex ideal ratio masks. Third, we define a novel loss function, weighted source-to-distortion ratio (wSDR) loss, which is designed to directly correlate with a quantitative evaluation measure. Our model was evaluated on a mixture of the Voice Bank corpus and DEMAND database, which has been widely used by many deep learning models for speech enhancement. Ablation experiments were conducted on the mixed dataset showing that all three proposed approaches are empirically valid. Experimental results show that the proposed method achieves state-of-the-art performance in all metrics, outperforming previous approaches by a large margin.

We introduce a multi-task setup of identifying and classifying entities, relations, and coreference clusters in scientific articles. We create SciERC, a dataset that includes annotations for all three tasks and develop a unified framework called Scientific Information Extractor (SciIE) for with shared span representations. The multi-task setup reduces cascading errors between tasks and leverages cross-sentence relations through coreference links. Experiments show that our multi-task model outperforms previous models in scientific information extraction without using any domain-specific features. We further show that the framework supports construction of a scientific knowledge graph, which we use to analyze information in scientific literature.

北京阿比特科技有限公司