亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Path planning for multiple tethered robots is a challenging problem due to the complex interactions among the cables and the possibility of severe entanglements. Previous works on this problem either consider idealistic cable models or provide no guarantee for entanglement-free paths. In this work, we present a new approach to address this problem using the theory of braids. By establishing a topological equivalence between the physical cables and the space-time trajectories of the robots, and identifying particular braid patterns that emerge from the entangled trajectories, we obtain the key finding that all complex entanglements stem from a finite number of interaction patterns between 2 or 3 robots. Hence, non-entanglement can be guaranteed by avoiding these interaction patterns in the trajectories of the robots. Based on this finding, we present a graph search algorithm using the permutation grid to efficiently search for a feasible topology of paths and reject braid patterns that result in an entanglement. We demonstrate that the proposed algorithm can achieve 100% goal-reaching capability without entanglement for up to 10 drones with a slack cable model in a high-fidelity simulation platform. The practicality of the proposed approach is verified using three small tethered UAVs in indoor flight experiments.

相關內容

IFIP TC13 Conference on Human-Computer Interaction是人機交互領域的研究者和實踐者展示其工作的重要平臺。多年來,這些會議吸引了來自幾個國家和文化的研究人員。官網鏈接: · 自動問答 · Performance · Attention · 論文 ·
2023 年 8 月 7 日

Conversational Question Answering (CQA) is a challenging task that aims to generate natural answers for conversational flow questions. In this paper, we propose a pluggable approach for extractive methods that introduces a novel prompt-guided copy mechanism to improve the fluency and appropriateness of the extracted answers. Our approach uses prompts to link questions to answers and employs attention to guide the copy mechanism to verify the naturalness of extracted answers, making necessary edits to ensure that the answers are fluent and appropriate. The three prompts, including a question-rationale relationship prompt, a question description prompt, and a conversation history prompt, enhance the copy mechanism's performance. Our experiments demonstrate that this approach effectively promotes the generation of natural answers and achieves good results in the CoQA challenge.

Accurate modeling of complex physical problems, such as fluid-structure interaction, requires multiphysics coupling across the interface, which often has intricate geometry and dynamic boundaries. Conventional numerical methods face challenges in handling interface conditions. Deep neural networks offer a mesh-free and flexible alternative, but they suffer from drawbacks such as time-consuming optimization and local optima. In this paper, we propose a mesh-free approach based on Randomized Neural Networks (RNNs), which avoid optimization solvers during training, making them more efficient than traditional deep neural networks. Our approach, called Local Randomized Neural Networks (LRNNs), uses different RNNs to approximate solutions in different subdomains. We discretize the interface problem into a linear system at randomly sampled points across the domain, boundary, and interface using a finite difference scheme, and then solve it by a least-square method. For time-dependent interface problems, we use a space-time approach based on LRNNs. We show the effectiveness and robustness of the LRNNs methods through numerical examples of elliptic and parabolic interface problems. We also demonstrate that our approach can handle high-dimension interface problems. Compared to conventional numerical methods, our approach achieves higher accuracy with fewer degrees of freedom, eliminates the need for complex interface meshing and fitting, and significantly reduces training time, outperforming deep neural networks.

The problem of bandit with graph feedback generalizes both the multi-armed bandit (MAB) problem and the learning with expert advice problem by encoding in a directed graph how the loss vector can be observed in each round of the game. The mini-max regret is closely related to the structure of the feedback graph and their connection is far from being fully understood. We propose a new algorithmic framework for the problem based on a partition of the feedback graph. Our analysis reveals the interplay between various parts of the graph by decomposing the regret to the sum of the regret caused by small parts and the regret caused by their interaction. As a result, our algorithm can be viewed as an interpolation and generalization of the optimal algorithms for MAB and learning with expert advice. Our framework unifies previous algorithms for both strongly observable graphs and weakly observable graphs, resulting in improved and optimal regret bounds on a wide range of graph families including graphs of bounded degree and strongly observable graphs with a few corrupted arms.

Adversarial training (AT) is widely considered the state-of-the-art technique for improving the robustness of deep neural networks (DNNs) against adversarial examples (AE). Nevertheless, recent studies have revealed that adversarially trained models are prone to unfairness problems, restricting their applicability. In this paper, we empirically observe that this limitation may be attributed to serious adversarial confidence overfitting, i.e., certain adversarial examples with overconfidence. To alleviate this problem, we propose HAM, a straightforward yet effective framework via adaptive Hard Adversarial example Mining.HAM concentrates on mining hard adversarial examples while discarding the easy ones in an adaptive fashion. Specifically, HAM identifies hard AEs in terms of their step sizes needed to cross the decision boundary when calculating loss value. Besides, an early-dropping mechanism is incorporated to discard the easy examples at the initial stages of AE generation, resulting in efficient AT. Extensive experimental results on CIFAR-10, SVHN, and Imagenette demonstrate that HAM achieves significant improvement in robust fairness while reducing computational cost compared to several state-of-the-art adversarial training methods. The code will be made publicly available.

Visual Question Answering (VQA) based on multi-modal data facilitates real-life applications such as home robots and medical diagnoses. One significant challenge is to devise a robust decentralized learning framework for various client models where centralized data collection is refrained due to confidentiality concerns. This work aims to tackle privacy-preserving VQA by decoupling a multi-modal model into representation modules and a contrastive module and leveraging inter-module gradients sharing and inter-client weight sharing. To this end, we propose Bidirectional Contrastive Split Learning (BiCSL) to train a global multi-modal model on the entire data distribution of decentralized clients. We employ the contrastive loss that enables a more efficient self-supervised learning of decentralized modules. Comprehensive experiments are conducted on the VQA-v2 dataset based on five SOTA VQA models, demonstrating the effectiveness of the proposed method. Furthermore, we inspect BiCSL's robustness against a dual-key backdoor attack on VQA. Consequently, BiCSL shows much better robustness to the multi-modal adversarial attack compared to the centralized learning method, which provides a promising approach to decentralized multi-modal learning.

Behaviors of the synthetic characters in current military simulations are limited since they are generally generated by rule-based and reactive computational models with minimal intelligence. Such computational models cannot adapt to reflect the experience of the characters, resulting in brittle intelligence for even the most effective behavior models devised via costly and labor-intensive processes. Observation-based behavior model adaptation that leverages machine learning and the experience of synthetic entities in combination with appropriate prior knowledge can address the issues in the existing computational behavior models to create a better training experience in military training simulations. In this paper, we introduce a framework that aims to create autonomous synthetic characters that can perform coherent sequences of believable behavior while being aware of human trainees and their needs within a training simulation. This framework brings together three mutually complementary components. The first component is a Unity-based simulation environment - Rapid Integration and Development Environment (RIDE) - supporting One World Terrain (OWT) models and capable of running and supporting machine learning experiments. The second is Shiva, a novel multi-agent reinforcement and imitation learning framework that can interface with a variety of simulation environments, and that can additionally utilize a variety of learning algorithms. The final component is the Sigma Cognitive Architecture that will augment the behavior models with symbolic and probabilistic reasoning capabilities. We have successfully created proof-of-concept behavior models leveraging this framework on realistic terrain as an essential step towards bringing machine learning into military simulations.

Embedding entities and relations into a continuous multi-dimensional vector space have become the dominant method for knowledge graph embedding in representation learning. However, most existing models ignore to represent hierarchical knowledge, such as the similarities and dissimilarities of entities in one domain. We proposed to learn a Domain Representations over existing knowledge graph embedding models, such that entities that have similar attributes are organized into the same domain. Such hierarchical knowledge of domains can give further evidence in link prediction. Experimental results show that domain embeddings give a significant improvement over the most recent state-of-art baseline knowledge graph embedding models.

Graph neural networks (GNNs) are a popular class of machine learning models whose major advantage is their ability to incorporate a sparse and discrete dependency structure between data points. Unfortunately, GNNs can only be used when such a graph-structure is available. In practice, however, real-world graphs are often noisy and incomplete or might not be available at all. With this work, we propose to jointly learn the graph structure and the parameters of graph convolutional networks (GCNs) by approximately solving a bilevel program that learns a discrete probability distribution on the edges of the graph. This allows one to apply GCNs not only in scenarios where the given graph is incomplete or corrupted but also in those where a graph is not available. We conduct a series of experiments that analyze the behavior of the proposed method and demonstrate that it outperforms related methods by a significant margin.

We advocate the use of implicit fields for learning generative models of shapes and introduce an implicit field decoder for shape generation, aimed at improving the visual quality of the generated shapes. An implicit field assigns a value to each point in 3D space, so that a shape can be extracted as an iso-surface. Our implicit field decoder is trained to perform this assignment by means of a binary classifier. Specifically, it takes a point coordinate, along with a feature vector encoding a shape, and outputs a value which indicates whether the point is outside the shape or not. By replacing conventional decoders by our decoder for representation learning and generative modeling of shapes, we demonstrate superior results for tasks such as shape autoencoding, generation, interpolation, and single-view 3D reconstruction, particularly in terms of visual quality.

Deep neural network architectures have traditionally been designed and explored with human expertise in a long-lasting trial-and-error process. This process requires huge amount of time, expertise, and resources. To address this tedious problem, we propose a novel algorithm to optimally find hyperparameters of a deep network architecture automatically. We specifically focus on designing neural architectures for medical image segmentation task. Our proposed method is based on a policy gradient reinforcement learning for which the reward function is assigned a segmentation evaluation utility (i.e., dice index). We show the efficacy of the proposed method with its low computational cost in comparison with the state-of-the-art medical image segmentation networks. We also present a new architecture design, a densely connected encoder-decoder CNN, as a strong baseline architecture to apply the proposed hyperparameter search algorithm. We apply the proposed algorithm to each layer of the baseline architectures. As an application, we train the proposed system on cine cardiac MR images from Automated Cardiac Diagnosis Challenge (ACDC) MICCAI 2017. Starting from a baseline segmentation architecture, the resulting network architecture obtains the state-of-the-art results in accuracy without performing any trial-and-error based architecture design approaches or close supervision of the hyperparameters changes.

北京阿比特科技有限公司