亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this paper, we introduce the maximum casual entropy Inverse Reinforcement Learning (IRL) problem for discrete-time mean-field games (MFGs) under an infinite-horizon discounted-reward optimality criterion. The state space of a typical agent is finite. Our approach begins with a comprehensive review of the maximum entropy IRL problem concerning deterministic and stochastic Markov decision processes (MDPs) in both finite and infinite-horizon scenarios. Subsequently, we formulate the maximum casual entropy IRL problem for MFGs - a non-convex optimization problem with respect to policies. Leveraging the linear programming formulation of MDPs, we restructure this IRL problem into a convex optimization problem and establish a gradient descent algorithm to compute the optimal solution with a rate of convergence. Finally, we present a new algorithm by formulating the MFG problem as a generalized Nash equilibrium problem (GNEP), which is capable of computing the mean-field equilibrium (MFE) for the forward RL problem. This method is employed to produce data for a numerical example. We note that this novel algorithm is also applicable to general MFE computations.

相關內容

This paper explores the role of the Chain of Thought (CoT) in Large Language Models (LLMs) reasoning. Despite its potential to improve task performance, our analysis reveals a surprising frequency of correct answers following incorrect CoTs and vice versa. We employ causal analysis to assess the cause-effect relationship between CoTs/instructions and answers in LLMs, uncovering the Structural Causal Model (SCM) that LLMs approximate. By comparing the implied SCM with that of human reasoning, we highlight discrepancies between LLM and human reasoning processes. We further examine the factors influencing the causal structure of the implied SCM, revealing that in-context learning, supervised fine-tuning, and reinforcement learning on human feedback significantly impact the causal relations. We release the code and results at //github.com/StevenZHB/CoT_Causal_Analysis.

This paper presents a novel approach to task grouping in Multitask Learning (MTL), advancing beyond existing methods by addressing key theoretical and practical limitations. Unlike prior studies, our approach offers a more theoretically grounded method that does not rely on restrictive assumptions for constructing transfer gains. We also propose a flexible mathematical programming formulation which can accommodate a wide spectrum of resource constraints, thus enhancing its versatility. Experimental results across diverse domains, including computer vision datasets, combinatorial optimization benchmarks and time series tasks, demonstrate the superiority of our method over extensive baselines, validating its effectiveness and general applicability in MTL.

In this paper, we investigate the interplay between attention heads and specialized "next-token" neurons in the Multilayer Perceptron that predict specific tokens. By prompting an LLM like GPT-4 to explain these model internals, we can elucidate attention mechanisms that activate certain next-token neurons. Our analysis identifies attention heads that recognize contexts relevant to predicting a particular token, activating the associated neuron through the residual connection. We focus specifically on heads in earlier layers consistently activating the same next-token neuron across similar prompts. Exploring these differential activation patterns reveals that heads that specialize for distinct linguistic contexts are tied to generating certain tokens. Overall, our method combines neural explanations and probing isolated components to illuminate how attention enables context-dependent, specialized processing in LLMs.

In this paper, we present CaveSeg - the first visual learning pipeline for semantic segmentation and scene parsing for AUV navigation inside underwater caves. We address the problem of scarce annotated training data by preparing a comprehensive dataset for semantic segmentation of underwater cave scenes. It contains pixel annotations for important navigation markers (e.g. caveline, arrows), obstacles (e.g. ground plain and overhead layers), scuba divers, and open areas for servoing. Through comprehensive benchmark analyses on cave systems in USA, Mexico, and Spain locations, we demonstrate that robust deep visual models can be developed based on CaveSeg for fast semantic scene parsing of underwater cave environments. In particular, we formulate a novel transformer-based model that is computationally light and offers near real-time execution in addition to achieving state-of-the-art performance. Finally, we explore the design choices and implications of semantic segmentation for visual servoing by AUVs inside underwater caves. The proposed model and benchmark dataset open up promising opportunities for future research in autonomous underwater cave exploration and mapping.

This paper proposes an Intrusion Detection System (IDS) employing the Harris Hawks Optimization algorithm (HHO) to optimize Multilayer Perceptron learning by optimizing bias and weight parameters. HHO-MLP aims to select optimal parameters in its learning process to minimize intrusion detection errors in networks. HHO-MLP has been implemented using EvoloPy NN framework, an open-source Python tool specialized for training MLPs using evolutionary algorithms. For purposes of comparing the HHO model against other evolutionary methodologies currently available, specificity and sensitivity measures, accuracy measures, and mse and rmse measures have been calculated using KDD datasets. Experiments have demonstrated the HHO MLP method is effective at identifying malicious patterns. HHO-MLP has been tested against evolutionary algorithms like Butterfly Optimization Algorithm (BOA), Grasshopper Optimization Algorithms (GOA), and Black Widow Optimizations (BOW), with validation by Random Forest (RF), XG-Boost. HHO-MLP showed superior performance by attaining top scores with accuracy rate of 93.17%, sensitivity level of 89.25%, and specificity percentage of 95.41%.

Text Classification is the most essential and fundamental problem in Natural Language Processing. While numerous recent text classification models applied the sequential deep learning technique, graph neural network-based models can directly deal with complex structured text data and exploit global information. Many real text classification applications can be naturally cast into a graph, which captures words, documents, and corpus global features. In this survey, we bring the coverage of methods up to 2023, including corpus-level and document-level graph neural networks. We discuss each of these methods in detail, dealing with the graph construction mechanisms and the graph-based learning process. As well as the technological survey, we look at issues behind and future directions addressed in text classification using graph neural networks. We also cover datasets, evaluation metrics, and experiment design and present a summary of published performance on the publicly available benchmarks. Note that we present a comprehensive comparison between different techniques and identify the pros and cons of various evaluation metrics in this survey.

In this paper, we propose a novel Feature Decomposition and Reconstruction Learning (FDRL) method for effective facial expression recognition. We view the expression information as the combination of the shared information (expression similarities) across different expressions and the unique information (expression-specific variations) for each expression. More specifically, FDRL mainly consists of two crucial networks: a Feature Decomposition Network (FDN) and a Feature Reconstruction Network (FRN). In particular, FDN first decomposes the basic features extracted from a backbone network into a set of facial action-aware latent features to model expression similarities. Then, FRN captures the intra-feature and inter-feature relationships for latent features to characterize expression-specific variations, and reconstructs the expression feature. To this end, two modules including an intra-feature relation modeling module and an inter-feature relation modeling module are developed in FRN. Experimental results on both the in-the-lab databases (including CK+, MMI, and Oulu-CASIA) and the in-the-wild databases (including RAF-DB and SFEW) show that the proposed FDRL method consistently achieves higher recognition accuracy than several state-of-the-art methods. This clearly highlights the benefit of feature decomposition and reconstruction for classifying expressions.

Few-shot Knowledge Graph (KG) completion is a focus of current research, where each task aims at querying unseen facts of a relation given its few-shot reference entity pairs. Recent attempts solve this problem by learning static representations of entities and references, ignoring their dynamic properties, i.e., entities may exhibit diverse roles within task relations, and references may make different contributions to queries. This work proposes an adaptive attentional network for few-shot KG completion by learning adaptive entity and reference representations. Specifically, entities are modeled by an adaptive neighbor encoder to discern their task-oriented roles, while references are modeled by an adaptive query-aware aggregator to differentiate their contributions. Through the attention mechanism, both entities and references can capture their fine-grained semantic meanings, and thus render more expressive representations. This will be more predictive for knowledge acquisition in the few-shot scenario. Evaluation in link prediction on two public datasets shows that our approach achieves new state-of-the-art results with different few-shot sizes.

In this paper, we proposed to apply meta learning approach for low-resource automatic speech recognition (ASR). We formulated ASR for different languages as different tasks, and meta-learned the initialization parameters from many pretraining languages to achieve fast adaptation on unseen target language, via recently proposed model-agnostic meta learning algorithm (MAML). We evaluated the proposed approach using six languages as pretraining tasks and four languages as target tasks. Preliminary results showed that the proposed method, MetaASR, significantly outperforms the state-of-the-art multitask pretraining approach on all target languages with different combinations of pretraining languages. In addition, since MAML's model-agnostic property, this paper also opens new research direction of applying meta learning to more speech-related applications.

In this paper, we introduce the Reinforced Mnemonic Reader for machine reading comprehension tasks, which enhances previous attentive readers in two aspects. First, a reattention mechanism is proposed to refine current attentions by directly accessing to past attentions that are temporally memorized in a multi-round alignment architecture, so as to avoid the problems of attention redundancy and attention deficiency. Second, a new optimization approach, called dynamic-critical reinforcement learning, is introduced to extend the standard supervised method. It always encourages to predict a more acceptable answer so as to address the convergence suppression problem occurred in traditional reinforcement learning algorithms. Extensive experiments on the Stanford Question Answering Dataset (SQuAD) show that our model achieves state-of-the-art results. Meanwhile, our model outperforms previous systems by over 6% in terms of both Exact Match and F1 metrics on two adversarial SQuAD datasets.

北京阿比特科技有限公司