In this paper we characterise the long-run behaviour of the replicator dynamic in zero-sum games (symmetric or non-symmetric). Specifically, we prove that every zero-sum game possesses a unique global replicator attractor, which we then characterise. Most surprisingly, this attractor depends only on each player's preference order over their own strategies and not on the cardinal payoff values, defined by a finite directed graph we call the game's preference graph. When the game is symmetric, this graph is a tournament whose nodes are strategies; when the game is not symmetric, this graph is the game's response graph. We discuss the consequences of our results on chain recurrence and Nash equilibria.
Order execution is a fundamental task in quantitative finance, aiming at finishing acquisition or liquidation for a number of trading orders of the specific assets. Recent advance in model-free reinforcement learning (RL) provides a data-driven solution to the order execution problem. However, the existing works always optimize execution for an individual order, overlooking the practice that multiple orders are specified to execute simultaneously, resulting in suboptimality and bias. In this paper, we first present a multi-agent RL (MARL) method for multi-order execution considering practical constraints. Specifically, we treat every agent as an individual operator to trade one specific order, while keeping communicating with each other and collaborating for maximizing the overall profits. Nevertheless, the existing MARL algorithms often incorporate communication among agents by exchanging only the information of their partial observations, which is inefficient in complicated financial market. To improve collaboration, we then propose a learnable multi-round communication protocol, for the agents communicating the intended actions with each other and refining accordingly. It is optimized through a novel action value attribution method which is provably consistent with the original learning objective yet more efficient. The experiments on the data from two real-world markets have illustrated superior performance with significantly better collaboration effectiveness achieved by our method.
We present an exponentially convergent numerical method to approximate the solution of the Cauchy problem for the inhomogeneous fractional differential equation with an unbounded operator coefficient and Caputo fractional derivative in time. The numerical method is based on the newly obtained solution formula that consolidates the mild solution representations of sub-parabolic, parabolic and sub-hyperbolic equations with sectorial operator coefficient $A$ and non-zero initial data. The involved integral operators are approximated using the sinc-quadrature formulas that are tailored to the spectral parameters of $A$, fractional order $\alpha$ and the smoothness of the first initial condition, as well as to the properties of the equation's right-hand side $f(t)$. The resulting method possesses exponential convergence for positive sectorial $A$, any finite $t$, including $t = 0$ and the whole range $\alpha \in (0,2)$. It is suitable for a practically important case, when no knowledge of $f(t)$ is available outside the considered interval $t \in [0, T]$. The algorithm of the method is capable of multi-level parallelism. We provide numerical examples that confirm the theoretical error estimates.
In many applications, such as sport tournaments or recommendation systems, we have at our disposal data consisting of pairwise comparisons between a set of $n$ items (or players). The objective is to use this data to infer the latent strength of each item and/or their ranking. Existing results for this problem predominantly focus on the setting consisting of a single comparison graph $G$. However, there exist scenarios (e.g., sports tournaments) where the the pairwise comparison data evolves with time. Theoretical results for this dynamic setting are relatively limited and is the focus of this paper. We study an extension of the \emph{translation synchronization} problem, to the dynamic setting. In this setup, we are given a sequence of comparison graphs $(G_t)_{t\in \mathcal{T}}$, where $\mathcal{T} \subset [0,1]$ is a grid representing the time domain, and for each item $i$ and time $t\in \mathcal{T}$ there is an associated unknown strength parameter $z^*_{t,i}\in \mathbb{R}$. We aim to recover, for $t\in\mathcal{T}$, the strength vector $z^*_t=(z^*_{t,1},\dots,z^*_{t,n})$ from noisy measurements of $z^*_{t,i}-z^*_{t,j}$, where $\{i,j\}$ is an edge in $G_t$. Assuming that $z^*_t$ evolves smoothly in $t$, we propose two estimators -- one based on a smoothness-penalized least squares approach and the other based on projection onto the low frequency eigenspace of a suitable smoothness operator. For both estimators, we provide finite sample bounds for the $\ell_2$ estimation error under the assumption that $G_t$ is connected for all $t\in \mathcal{T}$, thus proving the consistency of the proposed methods in terms of the grid size $|\mathcal{T}|$. We complement our theoretical findings with experiments on synthetic and real data.
We establish a framework of random inverse problems with real-time observations over graphs, and present a decentralized online learning algorithm based on online data streams, which unifies the distributed parameter estimation in Hilbert space and the least mean square problem in reproducing kernel Hilbert space (RKHS-LMS). We transform the algorithm convergence into the asymptotic stability of randomly time-varying difference equations in Hilbert space with L2-bounded martingale difference terms and develop the L2 -asymptotic stability theory. It is shown that if the network graph is connected and the sequence of forward operators satisfies the infinitedimensional spatio-temporal persistence of excitation condition, then the estimates of all nodes are mean square and almost surely strongly consistent. By equivalently transferring the distributed learning problem in RKHS to the random inverse problem over graphs, we propose a decentralized online learning algorithm in RKHS based on non-stationary and non-independent online data streams, and prove that the algorithm is mean square and almost surely strongly consistent if the operators induced by the random input data satisfy the infinite-dimensional spatio-temporal persistence of excitation condition.
While ERM suffices to attain near-optimal generalization error in the stochastic learning setting, this is not known to be the case in the online learning setting, where algorithms for general concept classes rely on computationally inefficient oracles such as the Standard Optimal Algorithm (SOA). In this work, we propose an algorithm for online binary classification setting that relies solely on ERM oracle calls, and show that it has finite regret in the realizable setting and sublinearly growing regret in the agnostic setting. We bound the regret in terms of the Littlestone and threshold dimensions of the underlying concept class. We obtain similar results for nonparametric games, where the ERM oracle can be interpreted as a best response oracle, finding the best response of a player to a given history of play of the other players. In this setting, we provide learning algorithms that only rely on best response oracles and converge to approximate-minimax equilibria in two-player zero-sum games and approximate coarse correlated equilibria in multi-player general-sum games, as long as the game has a bounded fat-threshold dimension. Our algorithms apply to both binary-valued and real-valued games and can be viewed as providing justification for the wide use of double oracle and multiple oracle algorithms in the practice of solving large games.
Given a graph, the shortest-path problem requires finding a sequence of edges with minimum cumulative length that connects a source vertex to a target vertex. We consider a variant of this classical problem in which the position of each vertex in the graph is a continuous decision variable constrained in a convex set, and the length of an edge is a convex function of the position of its endpoints. Problems of this form arise naturally in many areas, from motion planning of autonomous vehicles to optimal control of hybrid systems. The price for such a wide applicability is the complexity of this problem, which is easily seen to be NP-hard. Our main contribution is a strong and lightweight mixed-integer convex formulation based on perspective operators, that makes it possible to efficiently find globally optimal paths in large graphs and in high-dimensional spaces.
We investigate online classification with paid stochastic experts. Here, before making their prediction, each expert must be paid. The amount that we pay each expert directly influences the accuracy of their prediction through some unknown Lipschitz "productivity" function. In each round, the learner must decide how much to pay each expert and then make a prediction. They incur a cost equal to a weighted sum of the prediction error and upfront payments for all experts. We introduce an online learning algorithm whose total cost after $T$ rounds exceeds that of a predictor which knows the productivity of all experts in advance by at most $\mathcal{O}(K^2(\log T)\sqrt{T})$ where $K$ is the number of experts. In order to achieve this result, we combine Lipschitz bandits and online classification with surrogate losses. These tools allow us to improve upon the bound of order $T^{2/3}$ one would obtain in the standard Lipschitz bandit setting. Our algorithm is empirically evaluated on synthetic data
In the first part of this survey, we review how the power of two choices underlies space-efficient data structures like cuckoo hash tables. We'll find that the additional power afforded by more than 2 choices is often outweighed by the additional costs they bring. In the second part, we present a data structure where choices play a role at coarser than per-element granularity. In some sense, we rely on the power of $1+\epsilon$ choices.
Generalized logit dynamic defines a time-dependent integro-differential equation with which a Nash equilibrium of an iterative game in a bounded and continuous action space is expected to be approximated. We show that the use of the exponential logit function is essential for the approximability, which will not be necessarily satisfied with functions with convex exponential-like functions such as q-exponential ones. We computationally analyze this issue and discuss influences of the choice of the logit function through an application to a fishing tourism problem in Japan.
Game theory has by now found numerous applications in various fields, including economics, industry, jurisprudence, and artificial intelligence, where each player only cares about its own interest in a noncooperative or cooperative manner, but without obvious malice to other players. However, in many practical applications, such as poker, chess, evader pursuing, drug interdiction, coast guard, cyber-security, and national defense, players often have apparently adversarial stances, that is, selfish actions of each player inevitably or intentionally inflict loss or wreak havoc on other players. Along this line, this paper provides a systematic survey on three main game models widely employed in adversarial games, i.e., zero-sum normal-form and extensive-form games, Stackelberg (security) games, zero-sum differential games, from an array of perspectives, including basic knowledge of game models, (approximate) equilibrium concepts, problem classifications, research frontiers, (approximate) optimal strategy seeking techniques, prevailing algorithms, and practical applications. Finally, promising future research directions are also discussed for relevant adversarial games.