亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Quantum adversarial machine learning is an emerging field that studies the vulnerability of quantum learning systems against adversarial perturbations and develops possible defense strategies. Quantum universal adversarial perturbations are small perturbations, which can make different input samples into adversarial examples that may deceive a given quantum classifier. This is a field that was rarely looked into but worthwhile investigating because universal perturbations might simplify malicious attacks to a large extent, causing unexpected devastation to quantum machine learning models. In this paper, we take a step forward and explore the quantum universal perturbations in the context of heterogeneous classification tasks. In particular, we find that quantum classifiers that achieve almost state-of-the-art accuracy on two different classification tasks can be both conclusively deceived by one carefully-crafted universal perturbation. This result is explicitly demonstrated with well-designed quantum continual learning models with elastic weight consolidation method to avoid catastrophic forgetting, as well as real-life heterogeneous datasets from hand-written digits and medical MRI images. Our results provide a simple and efficient way to generate universal perturbations on heterogeneous classification tasks and thus would provide valuable guidance for future quantum learning technologies.

相關內容

Sparse attention as a efficient method can significantly decrease the computation cost, but current sparse attention tend to rely on window self attention which block the global information flow. For this problem, we present Shifted Cross Chunk Attention (SCCA), using different KV shifting strategy to extend respective field in each attention layer. Except, we combine Dilated Attention(DA) and Dilated Neighborhood Attention(DNA) to present Shifted Dilated Attention(SDA). Both SCCA and SDA can accumulate attention results in multi head attention to obtain approximate respective field in full attention. In this paper, we conduct language modeling experiments using different pattern of SCCA and combination of SCCA and SDA. The proposed shifted cross chunk attention (SCCA) can effectively extend large language models (LLMs) to longer context combined with Positional interpolation(PI) and LoRA than current sparse attention. Notably, SCCA adopts LLaMA2 7B from 4k context to 8k in single V100. This attention pattern can provide a Plug-and-play fine-tuning method to extend model context while retaining their original architectures, and is compatible with most existing techniques.

Background: The detection and extraction of causality from natural language sentences have shown great potential in various fields of application. The field of requirements engineering is eligible for multiple reasons: (1) requirements artifacts are primarily written in natural language, (2) causal sentences convey essential context about the subject of requirements, and (3) extracted and formalized causality relations are usable for a (semi-)automatic translation into further artifacts, such as test cases. Objective: We aim at understanding the value of interactive causality extraction based on syntactic criteria for the context of requirements engineering. Method: We developed a prototype of a system for automatic causality extraction and evaluate it by applying it to a set of publicly available requirements artifacts, determining whether the automatic extraction reduces the manual effort of requirements formalization. Result: During the evaluation we analyzed 4457 natural language sentences from 18 requirements documents, 558 of which were causal (12.52%). The best evaluation of a requirements document provided an automatic extraction of 48.57% cause-effect graphs on average, which demonstrates the feasibility of the approach. Limitation: The feasibility of the approach has been proven in theory but lacks exploration of being scaled up for practical use. Evaluating the applicability of the automatic causality extraction for a requirements engineer is left for future research. Conclusion: A syntactic approach for causality extraction is viable for the context of requirements engineering and can aid a pipeline towards an automatic generation of further artifacts from requirements artifacts.

In survival analysis, complex machine learning algorithms have been increasingly used for predictive modeling. Given a collection of features available for inclusion in a predictive model, it may be of interest to quantify the relative importance of a subset of features for the prediction task at hand. In particular, in HIV vaccine trials, participant baseline characteristics are used to predict the probability of infection over the intended follow-up period, and investigators may wish to understand how much certain types of predictors, such as behavioral factors, contribute toward overall predictiveness. Time-to-event outcomes such as time to infection are often subject to right censoring, and existing methods for assessing variable importance are typically not intended to be used in this setting. We describe a broad class of algorithm-agnostic variable importance measures for prediction in the context of survival data. We propose a nonparametric efficient estimation procedure that incorporates flexible learning of nuisance parameters, yields asymptotically valid inference, and enjoys double-robustness. We assess the performance of our proposed procedure via numerical simulations and analyze data from the HVTN 702 study to inform enrollment strategies for future HIV vaccine trials.

Non-parametric machine learning models, such as random forests and gradient boosted trees, are frequently used to estimate house prices due to their predictive accuracy, but such methods are often limited in their ability to quantify prediction uncertainty. Conformal Prediction (CP) is a model-agnostic framework for constructing confidence sets around machine learning prediction models with minimal assumptions. However, due to the spatial dependencies observed in house prices, direct application of CP leads to confidence sets that are not calibrated everywhere, i.e., too large of confidence sets in certain geographical regions and too small in others. We survey various approaches to adjust the CP confidence set to account for this and demonstrate their performance on a data set from the housing market in Oslo, Norway. Our findings indicate that calibrating the confidence sets on a \textit{locally weighted} version of the non-conformity scores makes the coverage more consistently calibrated in different geographical regions. We also perform a simulation study on synthetically generated sale prices to empirically explore the performance of CP on housing market data under idealized conditions with known data-generating mechanisms.

The joint modeling of multiple longitudinal biomarkers together with a time-to-event outcome is a challenging modeling task of continued scientific interest. In particular, the computational complexity of high dimensional (generalized) mixed effects models often restricts the flexibility of shared parameter joint models, even when the subject-specific marker trajectories follow highly nonlinear courses. We propose a parsimonious multivariate functional principal components representation of the shared random effects. This allows better scalability, as the dimension of the random effects does not directly increase with the number of markers, only with the chosen number of principal component basis functions used in the approximation of the random effects. The functional principal component representation additionally allows to estimate highly flexible subject-specific random trajectories without parametric assumptions. The modeled trajectories can thus be distinctly different for each biomarker. We build on the framework of flexible Bayesian additive joint models implemented in the R-package 'bamlss', which also supports estimation of nonlinear covariate effects via Bayesian P-splines. The flexible yet parsimonious functional principal components basis used in the estimation of the joint model is first estimated in a preliminary step. We validate our approach in a simulation study and illustrate its advantages by analyzing a study on primary biliary cholangitis.

We adopt the integral definition of the fractional Laplace operator and study an optimal control problem on Lipschitz domains that involves a fractional elliptic partial differential equation (PDE) as state equation and a control variable that enters the state equation as a coefficient; pointwise constraints on the control variable are considered as well. We establish the existence of optimal solutions and analyze first and, necessary and sufficient, second order optimality conditions. Regularity estimates for optimal variables are also analyzed. We develop two finite element discretization strategies: a semidiscrete scheme in which the control variable is not discretized, and a fully discrete scheme in which the control variable is discretized with piecewise constant functions. For both schemes, we analyze the convergence properties of discretizations and derive error estimates.

In modern computational materials science, deep learning has shown the capability to predict interatomic potentials, thereby supporting and accelerating conventional simulations. However, existing models typically sacrifice either accuracy or efficiency. Moreover, lightweight models are highly demanded for offering simulating systems on a considerably larger scale at reduced computational costs. A century ago, Felix Bloch demonstrated how leveraging the equivariance of the translation operation on a crystal lattice (with geometric symmetry) could significantly reduce the computational cost of determining wavefunctions and accurately calculate material properties. Here, we introduce a lightweight equivariant interaction graph neural network (LEIGNN) that can enable accurate and efficient interatomic potential and force predictions in crystals. Rather than relying on higher-order representations, LEIGNN employs a scalar-vector dual representation to encode equivariant features. By extracting both local and global structures from vector representations and learning geometric symmetry information, our model remains lightweight while ensuring prediction accuracy and robustness through the equivariance. Our results show that LEIGNN consistently outperforms the prediction performance of the representative baselines and achieves significant efficiency across diverse datasets, which include catalysts, molecules, and organic isomers. Finally, to further validate the predicted interatomic potentials from our model, we conduct classical molecular dynamics (MD) and ab initio MD simulation across various systems, including solid, liquid, and gas. It is found that LEIGNN can achieve the accuracy of ab initio MD and retain the computational efficiency of classical MD across all examined systems, demonstrating its accuracy, efficiency, and universality.

The remarkable practical success of deep learning has revealed some major surprises from a theoretical perspective. In particular, simple gradient methods easily find near-optimal solutions to non-convex optimization problems, and despite giving a near-perfect fit to training data without any explicit effort to control model complexity, these methods exhibit excellent predictive accuracy. We conjecture that specific principles underlie these phenomena: that overparametrization allows gradient methods to find interpolating solutions, that these methods implicitly impose regularization, and that overparametrization leads to benign overfitting. We survey recent theoretical progress that provides examples illustrating these principles in simpler settings. We first review classical uniform convergence results and why they fall short of explaining aspects of the behavior of deep learning methods. We give examples of implicit regularization in simple settings, where gradient methods lead to minimal norm functions that perfectly fit the training data. Then we review prediction methods that exhibit benign overfitting, focusing on regression problems with quadratic loss. For these methods, we can decompose the prediction rule into a simple component that is useful for prediction and a spiky component that is useful for overfitting but, in a favorable setting, does not harm prediction accuracy. We focus specifically on the linear regime for neural networks, where the network can be approximated by a linear model. In this regime, we demonstrate the success of gradient flow, and we consider benign overfitting with two-layer networks, giving an exact asymptotic analysis that precisely demonstrates the impact of overparametrization. We conclude by highlighting the key challenges that arise in extending these insights to realistic deep learning settings.

Deep learning is usually described as an experiment-driven field under continuous criticizes of lacking theoretical foundations. This problem has been partially fixed by a large volume of literature which has so far not been well organized. This paper reviews and organizes the recent advances in deep learning theory. The literature is categorized in six groups: (1) complexity and capacity-based approaches for analyzing the generalizability of deep learning; (2) stochastic differential equations and their dynamic systems for modelling stochastic gradient descent and its variants, which characterize the optimization and generalization of deep learning, partially inspired by Bayesian inference; (3) the geometrical structures of the loss landscape that drives the trajectories of the dynamic systems; (4) the roles of over-parameterization of deep neural networks from both positive and negative perspectives; (5) theoretical foundations of several special structures in network architectures; and (6) the increasingly intensive concerns in ethics and security and their relationships with generalizability.

Graph representation learning for hypergraphs can be used to extract patterns among higher-order interactions that are critically important in many real world problems. Current approaches designed for hypergraphs, however, are unable to handle different types of hypergraphs and are typically not generic for various learning tasks. Indeed, models that can predict variable-sized heterogeneous hyperedges have not been available. Here we develop a new self-attention based graph neural network called Hyper-SAGNN applicable to homogeneous and heterogeneous hypergraphs with variable hyperedge sizes. We perform extensive evaluations on multiple datasets, including four benchmark network datasets and two single-cell Hi-C datasets in genomics. We demonstrate that Hyper-SAGNN significantly outperforms the state-of-the-art methods on traditional tasks while also achieving great performance on a new task called outsider identification. Hyper-SAGNN will be useful for graph representation learning to uncover complex higher-order interactions in different applications.

北京阿比特科技有限公司