亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Accurate, real-time segmentation of vessel structures in ultrasound image sequences can aid in the measurement of lumen diameters and assessment of vascular diseases. This, however, remains a challenging task, particularly for extremely small vessels that are difficult to visualize. We propose to leverage the rich spatiotemporal context available in ultrasound to improve segmentation of small-scale lower-extremity arterial vasculature. We describe efficient deep learning methods that incorporate temporal, spatial, and feature-aware contextual embeddings at multiple resolution scales while jointly utilizing information from B-mode and Color Doppler signals. Evaluating on femoral and tibial artery scans performed on healthy subjects by an expert ultrasonographer, and comparing to consensus expert ground-truth annotations of inner lumen boundaries, we demonstrate real-time segmentation using the context-aware models and show that they significantly outperform comparable baseline approaches.

相關內容

Few-shot learning is a fundamental and challenging problem since it requires recognizing novel categories from only a few examples. The objects for recognition have multiple variants and can locate anywhere in images. Directly comparing query images with example images can not handle content misalignment. The representation and metric for comparison are critical but challenging to learn due to the scarcity and wide variation of the samples in few-shot learning. In this paper, we present a novel semantic alignment model to compare relations, which is robust to content misalignment. We propose to add two key ingredients to existing few-shot learning frameworks for better feature and metric learning ability. First, we introduce a semantic alignment loss to align the relation statistics of the features from samples that belong to the same category. And second, local and global mutual information maximization is introduced, allowing for representations that contain locally-consistent and intra-class shared information across structural locations in an image. Thirdly, we introduce a principled approach to weigh multiple loss functions by considering the homoscedastic uncertainty of each stream. We conduct extensive experiments on several few-shot learning datasets. Experimental results show that the proposed method is capable of comparing relations with semantic alignment strategies, and achieves state-of-the-art performance.

While designing sustainable and resilient urban built environment is increasingly promoted around the world, significant data gaps have made research on pressing sustainability issues challenging to carry out. Pavements are known to have strong economic and environmental impacts; however, most cities lack a spatial catalog of their surfaces due to the cost-prohibitive and time-consuming nature of data collection. Recent advancements in computer vision, together with the availability of street-level images, provide new opportunities for cities to extract large-scale built environment data with lower implementation costs and higher accuracy. In this paper, we propose CitySurfaces, an active learning-based framework that leverages computer vision techniques for classifying sidewalk materials using widely available street-level images. We trained the framework on images from New York City and Boston and the evaluation results show a 90.5% mIoU score. Furthermore, we evaluated the framework using images from six different cities, demonstrating that it can be applied to regions with distinct urban fabrics, even outside the domain of the training data. CitySurfaces can provide researchers and city agencies with a low-cost, accurate, and extensible method to collect sidewalk material data which plays a critical role in addressing major sustainability issues, including climate change and surface water management.

Recently, transformer-based image segmentation methods have achieved notable success against previous solutions. While for video domains, how to effectively model temporal context with the attention of object instances across frames remains an open problem. In this paper, we propose an online video instance segmentation framework with a novel instance-aware temporal fusion method. We first leverages the representation, i.e., a latent code in the global context (instance code) and CNN feature maps to represent instance- and pixel-level features. Based on this representation, we introduce a cropping-free temporal fusion approach to model the temporal consistency between video frames. Specifically, we encode global instance-specific information in the instance code and build up inter-frame contextual fusion with hybrid attentions between the instance codes and CNN feature maps. Inter-frame consistency between the instance codes are further enforced with order constraints. By leveraging the learned hybrid temporal consistency, we are able to directly retrieve and maintain instance identities across frames, eliminating the complicated frame-wise instance matching in prior methods. Extensive experiments have been conducted on popular VIS datasets, i.e. Youtube-VIS-19/21. Our model achieves the best performance among all online VIS methods. Notably, our model also eclipses all offline methods when using the ResNet-50 backbone.

Semi-supervised video object segmentation is a task of segmenting the target object in a video sequence given only a mask annotation in the first frame. The limited information available makes it an extremely challenging task. Most previous best-performing methods adopt matching-based transductive reasoning or online inductive learning. Nevertheless, they are either less discriminative for similar instances or insufficient in the utilization of spatio-temporal information. In this work, we propose to integrate transductive and inductive learning into a unified framework to exploit the complementarity between them for accurate and robust video object segmentation. The proposed approach consists of two functional branches. The transduction branch adopts a lightweight transformer architecture to aggregate rich spatio-temporal cues while the induction branch performs online inductive learning to obtain discriminative target information. To bridge these two diverse branches, a two-head label encoder is introduced to learn the suitable target prior for each of them. The generated mask encodings are further forced to be disentangled to better retain their complementarity. Extensive experiments on several prevalent benchmarks show that, without the need of synthetic training data, the proposed approach sets a series of new state-of-the-art records. Code is available at //github.com/maoyunyao/JOINT.

We consider an interesting problem-salient instance segmentation in this paper. Other than producing bounding boxes, our network also outputs high-quality instance-level segments. Taking into account the category-independent property of each target, we design a single stage salient instance segmentation framework, with a novel segmentation branch. Our new branch regards not only local context inside each detection window but also its surrounding context, enabling us to distinguish the instances in the same scope even with obstruction. Our network is end-to-end trainable and runs at a fast speed (40 fps when processing an image with resolution 320x320). We evaluate our approach on a publicly available benchmark and show that it outperforms other alternative solutions. We also provide a thorough analysis of the design choices to help readers better understand the functions of each part of our network. The source code can be found at \url{//github.com/RuochenFan/S4Net}.

3D image segmentation plays an important role in biomedical image analysis. Many 2D and 3D deep learning models have achieved state-of-the-art segmentation performance on 3D biomedical image datasets. Yet, 2D and 3D models have their own strengths and weaknesses, and by unifying them together, one may be able to achieve more accurate results. In this paper, we propose a new ensemble learning framework for 3D biomedical image segmentation that combines the merits of 2D and 3D models. First, we develop a fully convolutional network based meta-learner to learn how to improve the results from 2D and 3D models (base-learners). Then, to minimize over-fitting for our sophisticated meta-learner, we devise a new training method that uses the results of the base-learners as multiple versions of "ground truths". Furthermore, since our new meta-learner training scheme does not depend on manual annotation, it can utilize abundant unlabeled 3D image data to further improve the model. Extensive experiments on two public datasets (the HVSMR 2016 Challenge dataset and the mouse piriform cortex dataset) show that our approach is effective under fully-supervised, semi-supervised, and transductive settings, and attains superior performance over state-of-the-art image segmentation methods.

Automatic detection of defects in metal castings is a challenging task, owing to the rare occurrence and variation in appearance of defects. However, automatic defect detection systems can lead to significant increases in final product quality. Convolutional neural networks (CNNs) have shown outstanding performance in both image classification and localization tasks. In this work, a system is proposed for the identification of casting defects in X-ray images, based on the mask region-based CNN architecture. The proposed defect detection system simultaneously performs defect detection and segmentation on input images, making it suitable for a range of defect detection tasks. It is shown that training the network to simultaneously perform defect detection and defect instance segmentation, results in a higher defect detection accuracy than training on defect detection alone. Transfer learning is leveraged to reduce the training data demands and increase the prediction accuracy of the trained model. More specifically, the model is first trained with two large openly-available image datasets before fine-tuning on a relatively small metal casting X-ray dataset. The accuracy of the trained model exceeds state-of-the art performance on the GDXray Castings dataset and is fast enough to be used in a production setting. The system also performs well on the GDXray Welds dataset. A number of in-depth studies are conducted to explore how transfer learning, multi-task learning, and multi-class learning influence the performance of the trained system.

In recent years, deep learning (DL) methods have become powerful tools for biomedical image segmentation. However, high annotation efforts and costs are commonly needed to acquire sufficient biomedical training data for DL models. To alleviate the burden of manual annotation, in this paper, we propose a new weakly supervised DL approach for biomedical image segmentation using boxes only annotation. First, we develop a method to combine graph search (GS) and DL to generate fine object masks from box annotation, in which DL uses box annotation to compute a rough segmentation for GS and then GS is applied to locate the optimal object boundaries. During the mask generation process, we carefully utilize information from box annotation to filter out potential errors, and then use the generated masks to train an accurate DL segmentation network. Extensive experiments on gland segmentation in histology images, lymph node segmentation in ultrasound images, and fungus segmentation in electron microscopy images show that our approach attains superior performance over the best known state-of-the-art weakly supervised DL method and is able to achieve (1) nearly the same accuracy compared to fully supervised DL methods with far less annotation effort, (2) significantly better results with similar annotation time, and (3) robust performance in various applications.

One of the most common tasks in medical imaging is semantic segmentation. Achieving this segmentation automatically has been an active area of research, but the task has been proven very challenging due to the large variation of anatomy across different patients. However, recent advances in deep learning have made it possible to significantly improve the performance of image recognition and semantic segmentation methods in the field of computer vision. Due to the data driven approaches of hierarchical feature learning in deep learning frameworks, these advances can be translated to medical images without much difficulty. Several variations of deep convolutional neural networks have been successfully applied to medical images. Especially fully convolutional architectures have been proven efficient for segmentation of 3D medical images. In this article, we describe how to build a 3D fully convolutional network (FCN) that can process 3D images in order to produce automatic semantic segmentations. The model is trained and evaluated on a clinical computed tomography (CT) dataset and shows state-of-the-art performance in multi-organ segmentation.

In this paper, we propose a novel feature learning framework for video person re-identification (re-ID). The proposed framework largely aims to exploit the adequate temporal information of video sequences and tackle the poor spatial alignment of moving pedestrians. More specifically, for exploiting the temporal information, we design a temporal residual learning (TRL) module to simultaneously extract the generic and specific features of consecutive frames. The TRL module is equipped with two bi-directional LSTM (BiLSTM), which are respectively responsible to describe a moving person in different aspects, providing complementary information for better feature representations. To deal with the poor spatial alignment in video re-ID datasets, we propose a spatial-temporal transformer network (ST^2N) module. Transformation parameters in the ST^2N module are learned by leveraging the high-level semantic information of the current frame as well as the temporal context knowledge from other frames. The proposed ST^2N module with less learnable parameters allows effective person alignments under significant appearance changes. Extensive experimental results on the large-scale MARS, PRID2011, ILIDS-VID and SDU-VID datasets demonstrate that the proposed method achieves consistently superior performance and outperforms most of the very recent state-of-the-art methods.

北京阿比特科技有限公司