亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The foraging behavior of animals is a paradigm of target search in nature. Understanding which foraging strategies are optimal and how animals learn them are central challenges in modeling animal foraging. While the question of optimality has wide-ranging implications across fields such as economy, physics, and ecology, the question of learnability is a topic of ongoing debate in evolutionary biology. Recognizing the interconnected nature of these challenges, this work addresses them simultaneously by exploring optimal foraging strategies through a reinforcement learning framework. To this end, we model foragers as learning agents. We first prove theoretically that maximizing rewards in our reinforcement learning model is equivalent to optimizing foraging efficiency. We then show with numerical experiments that, in the paradigmatic model of non-destructive search, our agents learn foraging strategies which outperform the efficiency of some of the best known strategies such as L\'evy walks. These findings highlight the potential of reinforcement learning as a versatile framework not only for optimizing search strategies but also to model the learning process, thus shedding light on the role of learning in natural optimization processes.

相關內容

This study examines, in the framework of variational regularization methods, a multi-penalty regularization approach which builds upon the Uniform PENalty (UPEN) method, previously proposed by the authors for Nuclear Magnetic Resonance (NMR) data processing. The paper introduces two iterative methods, UpenMM and GUpenMM, formulated within the Majorization-Minimization (MM) framework. These methods are designed to identify appropriate regularization parameters and solutions for linear inverse problems utilizing multi-penalty regularization. The paper demonstrates the convergence of these methods and illustrates their potential through numerical examples in one and two-dimensional scenarios, showing the practical utility of point-wise regularization terms in solving various inverse problems.

Validation metrics are key for the reliable tracking of scientific progress and for bridging the current chasm between artificial intelligence (AI) research and its translation into practice. However, increasing evidence shows that particularly in image analysis, metrics are often chosen inadequately in relation to the underlying research problem. This could be attributed to a lack of accessibility of metric-related knowledge: While taking into account the individual strengths, weaknesses, and limitations of validation metrics is a critical prerequisite to making educated choices, the relevant knowledge is currently scattered and poorly accessible to individual researchers. Based on a multi-stage Delphi process conducted by a multidisciplinary expert consortium as well as extensive community feedback, the present work provides the first reliable and comprehensive common point of access to information on pitfalls related to validation metrics in image analysis. Focusing on biomedical image analysis but with the potential of transfer to other fields, the addressed pitfalls generalize across application domains and are categorized according to a newly created, domain-agnostic taxonomy. To facilitate comprehension, illustrations and specific examples accompany each pitfall. As a structured body of information accessible to researchers of all levels of expertise, this work enhances global comprehension of a key topic in image analysis validation.

Distinguishing two classes of candidate models is a fundamental and practically important problem in statistical inference. Error rate control is crucial to the logic but, in complex nonparametric settings, such guarantees can be difficult to achieve, especially when the stopping rule that determines the data collection process is not available. In this paper we develop a novel e-value construction that leverages the so-called predictive recursion (PR) algorithm designed to recursively fit nonparametric mixture models. The resulting PRe-value affords anytime valid inference uniformly over stopping rules and is shown to be efficient in the sense that it achieves the maximal growth rate under the alternative relative to the mixture model being fit by PR. In the special case of testing the density for log-concavity, the PRe-value test is shown empirically to be significantly more efficient than a recently proposed anytime valid test based on universal inference.

Mediation analysis is widely used for investigating direct and indirect causal pathways through which an effect arises. However, many mediation analysis studies are challenged by missingness in the mediator and outcome. In general, when the mediator and outcome are missing not at random, the direct and indirect effects are not identifiable without further assumptions. In this work, we study the identifiability of the direct and indirect effects under some interpretable mechanisms that allow for missing not at random in the mediator and outcome. We evaluate the performance of statistical inference under those mechanisms through simulation studies and illustrate the proposed methods via the National Job Corps Study.

Natural revision seems so natural: it changes beliefs as little as possible to incorporate new information. Yet, some counterexamples show it wrong. It is so conservative that it never fully believes. It only believes in the current conditions. This is right in some cases and wrong in others. Which is which? The answer requires extending natural revision from simple formulae expressing universal truths (something holds) to conditionals expressing conditional truth (something holds in certain conditions). The extension is based on the basic principles natural revision follows, identified as minimal change, indifference and naivety: change beliefs as little as possible; equate the likeliness of scenarios by default; believe all until contradicted. The extension says that natural revision restricts changes to the current conditions. A comparison with an unrestricting revision shows what exactly the current conditions are. It is not what currently considered true if it contradicts the new information. It includes something more and more unlikely until the new information is at least possible.

The autologistic actor attribute model, or ALAAM, is the social influence counterpart of the better-known exponential-family random graph model (ERGM) for social selection. Extensive experience with ERGMs has shown that the problem of near-degeneracy which often occurs with simple models can be overcome by using "geometrically weighted" or "alternating" statistics. In the much more limited empirical applications of ALAAMs to date, the problem of near-degeneracy, although theoretically expected, appears to have been less of an issue. In this work I present a comprehensive survey of ALAAM applications, showing that this model has to date only been used with relatively small networks, in which near-degeneracy does not appear to be a problem. I show near-degeneracy does occur in simple ALAAM models of larger empirical networks, define some geometrically weighted ALAAM statistics analogous to those for ERGM, and demonstrate that models with these statistics do not suffer from near-degeneracy and hence can be estimated where they could not be with the simple statistics.

A rigidity circuit (in 2D) is a minimal dependent set in the rigidity matroid, i.e. a minimal graph supporting a non-trivial stress in any generic placement of its vertices in $\mathbb R^2$. Any rigidity circuit on $n\geq 5$ vertices can be obtained from rigidity circuits on a fewer number of vertices by applying the combinatorial resultant (CR) operation. The inverse operation is called a combinatorial resultant decomposition (CR-decomp). Any rigidity circuit on $n\geq 5$ vertices can be successively decomposed into smaller circuits, until the complete graphs $K_4$ are reached. This sequence of CR-decomps has the structure of a rooted binary tree called the combinatorial resultant tree (CR-tree). A CR-tree encodes an elimination strategy for computing circuit polynomials via Sylvester resultants. Different CR-trees lead to elimination strategies that can vary greatly in time and memory consumption. It is an open problem to establish criteria for optimal CR-trees, or at least to characterize those CR-trees that lead to good elimination strategies. In [12] we presented an algorithm for enumerating CR-trees where we give the algorithms for decomposing 3-connected rigidity circuits in polynomial time. In this paper we focus on those circuits that are not 3-connected, which we simply call 2-connected. In order to enumerate CR-decomps of 2-connected circuits $G$, a brute force exp-time search has to be performed among the subgraphs induced by the subsets of $V(G)$. This exp-time bottleneck is not present in the 3-connected case. In this paper we will argue that we do not have to account for all possible CR-decomps of 2-connected rigidity circuits to find a good elimination strategy; we only have to account for those CR-decomps that are a 2-split, all of which can be enumerated in polynomial time. We present algorithms and computational evidence in support of this heuristic.

We consider a one-dimensional singularly perturbed 4th order problem with the additional feature of a shift term. An expansion into a smooth term, boundary layers and an inner layer yields a formal solution decomposition, and together with a stability result we have estimates for the subsequent numerical analysis. With classical layer adapted meshes we present a numerical method, that achieves supercloseness and optimal convergence orders in the associated energy norm. We also consider coarser meshes in view of the weak layers. Some numerical examples conclude the paper and support the theory.

We propose an approach to compute inner and outer-approximations of the sets of values satisfying constraints expressed as arbitrarily quantified formulas. Such formulas arise for instance when specifying important problems in control such as robustness, motion planning or controllers comparison. We propose an interval-based method which allows for tractable but tight approximations. We demonstrate its applicability through a series of examples and benchmarks using a prototype implementation.

The remarkable practical success of deep learning has revealed some major surprises from a theoretical perspective. In particular, simple gradient methods easily find near-optimal solutions to non-convex optimization problems, and despite giving a near-perfect fit to training data without any explicit effort to control model complexity, these methods exhibit excellent predictive accuracy. We conjecture that specific principles underlie these phenomena: that overparametrization allows gradient methods to find interpolating solutions, that these methods implicitly impose regularization, and that overparametrization leads to benign overfitting. We survey recent theoretical progress that provides examples illustrating these principles in simpler settings. We first review classical uniform convergence results and why they fall short of explaining aspects of the behavior of deep learning methods. We give examples of implicit regularization in simple settings, where gradient methods lead to minimal norm functions that perfectly fit the training data. Then we review prediction methods that exhibit benign overfitting, focusing on regression problems with quadratic loss. For these methods, we can decompose the prediction rule into a simple component that is useful for prediction and a spiky component that is useful for overfitting but, in a favorable setting, does not harm prediction accuracy. We focus specifically on the linear regime for neural networks, where the network can be approximated by a linear model. In this regime, we demonstrate the success of gradient flow, and we consider benign overfitting with two-layer networks, giving an exact asymptotic analysis that precisely demonstrates the impact of overparametrization. We conclude by highlighting the key challenges that arise in extending these insights to realistic deep learning settings.

北京阿比特科技有限公司