亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Motivated by applications in production planning and storage allocation in hierarchical databases, we initiate the study of covering partially ordered items (CPO). Given a capacity $k \in \mathbb{Z}^+$, and a directed graph $G=(V,E)$ where each vertex has a size in $\{0,1, \ldots,k\}$, we seek a collection of subsets of vertices $S_1, \ldots, S_m$ that cover all the vertices, such that for any $1 \leq j \leq m$, the total size of vertices in $S_j$ is bounded by $k$, and there are no edges from $V \setminus S_j$ to $S_j$. The objective is to minimize the number of subsets $m$. CPO is closely related to the rule caching problem (RCP) that is of wide interest in the networking area. The input for RCP is a directed graph $G=(V,E)$, a profit function $p:V \rightarrow \mathbb{Z}_{0}^+$, and $k \in \mathbb{Z}^+$. The output is a subset $S \subseteq V$ of maximum profit such that $|S| \leq k$ and there are no edges from $V \setminus S$ to $S$. Our main result is a $2$-approximation algorithm for CPO on out-trees, complemented by an asymptotic $1.5$-hardness of approximation result. We also give a two-way reduction between RCP and the densest $k$-subhypergraph problem, surprisingly showing that the problems are equivalent w.r.t. polynomial-time approximation within any factor $\rho \geq 1$. This implies that RCP cannot be approximated within factor $|V|^{1-\eps}$ for any fixed $\eps>0$, under standard complexity assumptions. Prior to this work, RCP was just known to be strongly NP-hard. We further show that there is no EPTAS for the special case of RCP where the profits are uniform, assuming Gap-ETH. Since this variant admits a PTAS, we essentially resolve the complexity status of this problem.

相關內容

In this study, we identify the need for an interpretable, quantitative score of the repeatability, or consistency, of image generation in diffusion models. We propose a semantic approach, using a pairwise mean CLIP (Contrastive Language-Image Pretraining) score as our semantic consistency score. We applied this metric to compare two state-of-the-art open-source image generation diffusion models, Stable Diffusion XL and PixArt-{\alpha}, and we found statistically significant differences between the semantic consistency scores for the models. Agreement between the Semantic Consistency Score selected model and aggregated human annotations was 94%. We also explored the consistency of SDXL and a LoRA-fine-tuned version of SDXL and found that the fine-tuned model had significantly higher semantic consistency in generated images. The Semantic Consistency Score proposed here offers a measure of image generation alignment, facilitating the evaluation of model architectures for specific tasks and aiding in informed decision-making regarding model selection.

We address prevailing challenges of the brain-powered research, departing from the observation that the literature hardly recover accurate spatial information and require subject-specific models. To address these challenges, we propose UMBRAE, a unified multimodal decoding of brain signals. First, to extract instance-level conceptual and spatial details from neural signals, we introduce an efficient universal brain encoder for multimodal-brain alignment and recover object descriptions at multiple levels of granularity from subsequent multimodal large language model (MLLM). Second, we introduce a cross-subject training strategy mapping subject-specific features to a common feature space. This allows a model to be trained on multiple subjects without extra resources, even yielding superior results compared to subject-specific models. Further, we demonstrate this supports weakly-supervised adaptation to new subjects, with only a fraction of the total training data. Experiments demonstrate that UMBRAE not only achieves superior results in the newly introduced tasks but also outperforms methods in well established tasks. To assess our method, we construct and share with the community a comprehensive brain understanding benchmark BrainHub. Our code and benchmark are available at //weihaox.github.io/UMBRAE.

In this work, we use multi-view aerial images to reconstruct the geometry, lighting, and material of facades using neural signed distance fields (SDFs). Without the requirement of complex equipment, our method only takes simple RGB images captured by a drone as inputs to enable physically based and photorealistic novel-view rendering, relighting, and editing. However, a real-world facade usually has complex appearances ranging from diffuse rocks with subtle details to large-area glass windows with specular reflections, making it hard to attend to everything. As a result, previous methods can preserve the geometry details but fail to reconstruct smooth glass windows or verse vise. In order to address this challenge, we introduce three spatial- and semantic-adaptive optimization strategies, including a semantic regularization approach based on zero-shot segmentation techniques to improve material consistency, a frequency-aware geometry regularization to balance surface smoothness and details in different surfaces, and a visibility probe-based scheme to enable efficient modeling of the local lighting in large-scale outdoor environments. In addition, we capture a real-world facade aerial 3D scanning image set and corresponding point clouds for training and benchmarking. The experiment demonstrates the superior quality of our method on facade holistic inverse rendering, novel view synthesis, and scene editing compared to state-of-the-art baselines.

We explore the application of machine learning algorithms to predict the suitability of Russet potato clones for advancement in breeding trials. Leveraging data from manually collected trials in the state of Oregon, we investigate the potential of a wide variety of state-of-the-art binary classification models. We conduct a comprehensive analysis of the dataset that includes preprocessing, feature engineering, and imputation to address missing values. We focus on several key metrics such as accuracy, F1-score, and Matthews correlation coefficient (MCC) for model evaluation. The top-performing models, namely the multi-layer perceptron (MLPC), histogram-based gradient boosting classifier (HGBC), and a support vector machine (SVC), demonstrate consistent and significant results. Variable selection further enhances model performance and identifies influential features in predicting trial outcomes. The findings emphasize the potential of machine learning in streamlining the selection process for potato varieties, offering benefits such as increased efficiency, substantial cost savings, and judicious resource utilization. Our study contributes insights into precision agriculture and showcases the relevance of advanced technologies for informed decision-making in breeding programs.

Human-like Agents with diverse and dynamic personality could serve as an important design probe in the process of user-centered design, thereby enabling designers to enhance the user experience of interactive application.In this article, we introduce Evolving Agents, a novel agent architecture that consists of two systems: Personality and Behavior. The Personality system includes three modules: Cognition, Emotion and Character Growth. The Behavior system comprises two modules: Planning and Action. We also build a simulation platform that enables agents to interact with the environment and other agents. Evolving Agents can simulate the human personality evolution process. Compared to its initial state, agents' personality and behavior patterns undergo believable development after several days of simulation. Agents reflect on their behavior to reason and develop new personality traits. These traits, in turn, generate new behavior patterns, forming a feedback loop-like personality evolution.In our experiment, we utilized simulation platform with 10 agents for evaluation. During the evaluation, these agents experienced believable and inspirational personality evolution. Through ablation and control experiments, we demonstrated the outstanding effectiveness of agent personality evolution and all modules of our agent architecture contribute to creating believable human-like agents with diverse and dynamic personalities. We also demonstrated through workshops how Evolving Agents could inspire designers.

Recent statistical and reinforcement learning methods have significantly advanced patient care strategies. However, these approaches face substantial challenges in high-stakes contexts, including missing data, inherent stochasticity, and the critical requirements for interpretability and patient safety. Our work operationalizes a safe and interpretable framework to identify optimal treatment regimes. This approach involves matching patients with similar medical and pharmacological characteristics, allowing us to construct an optimal policy via interpolation. We perform a comprehensive simulation study to demonstrate the framework's ability to identify optimal policies even in complex settings. Ultimately, we operationalize our approach to study regimes for treating seizures in critically ill patients. Our findings strongly support personalized treatment strategies based on a patient's medical history and pharmacological features. Notably, we identify that reducing medication doses for patients with mild and brief seizure episodes while adopting aggressive treatment for patients in intensive care unit experiencing intense seizures leads to more favorable outcomes.

The adoption of high-density electrode systems for human-machine interfaces in real-life applications has been impeded by practical and technical challenges, including noise interference, motion artifacts and the lack of compact electrode interfaces. To overcome some of these challenges, we introduce a wearable and stretchable electromyography (EMG) array, and present its design, fabrication methodology, characterisation, and comprehensive evaluation. Our proposed solution comprises dry-electrodes on flexible printed circuit board (PCB) substrates, eliminating the need for time-consuming skin preparation. The proposed fabrication method allows the manufacturing of stretchable sleeves, with consistent and standardised coverage across subjects. We thoroughly tested our developed prototype, evaluating its potential for application in both research and real-world environments. The results of our study showed that the developed stretchable array matches or outperforms traditional EMG grids and holds promise in furthering the real-world translation of high-density EMG for human-machine interfaces.

In this work, we provide data stream algorithms that compute optimal splits in decision tree learning. In particular, given a data stream of observations $x_i$ and their labels $y_i$, the goal is to find the optimal split point $j$ that divides the data into two sets such that the mean squared error (for regression) or misclassification rate (for classification) is minimized. We provide various fast streaming algorithms that use sublinear space and a small number of passes for these problems. These algorithms can also be extended to the massively parallel computation model. Our work, while not directly comparable, complements the seminal work of Domingos and Hulten (KDD 2000).

Molecular design and synthesis planning are two critical steps in the process of molecular discovery that we propose to formulate as a single shared task of conditional synthetic pathway generation. We report an amortized approach to generate synthetic pathways as a Markov decision process conditioned on a target molecular embedding. This approach allows us to conduct synthesis planning in a bottom-up manner and design synthesizable molecules by decoding from optimized conditional codes, demonstrating the potential to solve both problems of design and synthesis simultaneously. The approach leverages neural networks to probabilistically model the synthetic trees, one reaction step at a time, according to reactivity rules encoded in a discrete action space of reaction templates. We train these networks on hundreds of thousands of artificial pathways generated from a pool of purchasable compounds and a list of expert-curated templates. We validate our method with (a) the recovery of molecules using conditional generation, (b) the identification of synthesizable structural analogs, and (c) the optimization of molecular structures given oracle functions relevant to drug discovery.

This work considers the question of how convenient access to copious data impacts our ability to learn causal effects and relations. In what ways is learning causality in the era of big data different from -- or the same as -- the traditional one? To answer this question, this survey provides a comprehensive and structured review of both traditional and frontier methods in learning causality and relations along with the connections between causality and machine learning. This work points out on a case-by-case basis how big data facilitates, complicates, or motivates each approach.

北京阿比特科技有限公司