Despite much progress, achieving real-time high-fidelity head avatar animation is still difficult and existing methods have to trade-off between speed and quality. 3DMM based methods often fail to model non-facial structures such as eyeglasses and hairstyles, while neural implicit models suffer from deformation inflexibility and rendering inefficiency. Although 3D Gaussian has been demonstrated to possess promising capability for geometry representation and radiance field reconstruction, applying 3D Gaussian in head avatar creation remains a major challenge since it is difficult for 3D Gaussian to model the head shape variations caused by changing poses and expressions. In this paper, we introduce PSAvatar, a novel framework for animatable head avatar creation that utilizes discrete geometric primitive to create a parametric morphable shape model and employs 3D Gaussian for fine detail representation and high fidelity rendering. The parametric morphable shape model is a Point-based Morphable Shape Model (PMSM) which uses points instead of meshes for 3D representation to achieve enhanced representation flexibility. The PMSM first converts the FLAME mesh to points by sampling on the surfaces as well as off the meshes to enable the reconstruction of not only surface-like structures but also complex geometries such as eyeglasses and hairstyles. By aligning these points with the head shape in an analysis-by-synthesis manner, the PMSM makes it possible to utilize 3D Gaussian for fine detail representation and appearance modeling, thus enabling the creation of high-fidelity avatars. We show that PSAvatar can reconstruct high-fidelity head avatars of a variety of subjects and the avatars can be animated in real-time ($\ge$ 25 fps at a resolution of 512 $\times$ 512 ).
Recent LiDAR-based 3D Object Detection (3DOD) methods show promising results, but they often do not generalize well to target domains outside the source (or training) data distribution. To reduce such domain gaps and thus to make 3DOD models more generalizable, we introduce a novel unsupervised domain adaptation (UDA) method, called CMDA, which (i) leverages visual semantic cues from an image modality (i.e., camera images) as an effective semantic bridge to close the domain gap in the cross-modal Bird's Eye View (BEV) representations. Further, (ii) we also introduce a self-training-based learning strategy, wherein a model is adversarially trained to generate domain-invariant features, which disrupt the discrimination of whether a feature instance comes from a source or an unseen target domain. Overall, our CMDA framework guides the 3DOD model to generate highly informative and domain-adaptive features for novel data distributions. In our extensive experiments with large-scale benchmarks, such as nuScenes, Waymo, and KITTI, those mentioned above provide significant performance gains for UDA tasks, achieving state-of-the-art performance.
Early weakly supervised video grounding (WSVG) methods often struggle with incomplete boundary detection due to the absence of temporal boundary annotations. To bridge the gap between video-level and boundary-level annotation, explicit-supervision methods, i.e., generating pseudo-temporal boundaries for training, have achieved great success. However, data augmentations in these methods might disrupt critical temporal information, yielding poor pseudo boundaries. In this paper, we propose a new perspective that maintains the integrity of the original temporal content while introducing more valuable information for expanding the incomplete boundaries. To this end, we propose EtC (Expand then Clarify), first use the additional information to expand the initial incomplete pseudo boundaries, and subsequently refine these expanded ones to achieve precise boundaries. Motivated by video continuity, i.e., visual similarity across adjacent frames, we use powerful multimodal large language models (MLLMs) to annotate each frame within initial pseudo boundaries, yielding more comprehensive descriptions for expanded boundaries. To further clarify the noise of expanded boundaries, we combine mutual learning with a tailored proposal-level contrastive objective to use a learnable approach to harmonize a balance between incomplete yet clean (initial) and comprehensive yet noisy (expanded) boundaries for more precise ones. Experiments demonstrate the superiority of our method on two challenging WSVG datasets.
Real-time flood forecasting plays a crucial role in enabling timely and effective emergency responses. However, a significant challenge lies in bridging the gap between complex numerical flood models and practical decision-making. Decision-makers often rely on experts to interpret these models for optimizing flood mitigation strategies. And the public requires complex techniques to inquiry and understand socio-cultural and institutional factors, often hinders the public's understanding of flood risks. To overcome these challenges, our study introduces an innovative solution: a customized AI Assistant powered by the GPT-4 Large Language Model. This AI Assistant is designed to facilitate effective communication between decision-makers, the general public, and flood forecasters, without the requirement of specialized knowledge. The new framework utilizes GPT-4's advanced natural language understanding and function calling capabilities to provide immediate flood alerts and respond to various flood-related inquiries. Our developed prototype integrates real-time flood warnings with flood maps and social vulnerability data. It also effectively translates complex flood zone information into actionable risk management advice. To assess its performance, we evaluated the prototype using six criteria within three main categories: relevance, error resilience, and understanding of context. Our research marks a significant step towards a more accessible and user-friendly approach in flood risk management. This study highlights the potential of advanced AI tools like GPT-4 in democratizing information and enhancing public engagement in critical social and environmental issues.
The body movements accompanying speech aid speakers in expressing their ideas. Co-speech motion generation is one of the important approaches for synthesizing realistic avatars. Due to the intricate correspondence between speech and motion, generating realistic and diverse motion is a challenging task. In this paper, we propose MMoFusion, a Multi-modal co-speech Motion generation framework based on the diffusion model to ensure both the authenticity and diversity of generated motion. We propose a progressive fusion strategy to enhance the interaction of inter-modal and intra-modal, efficiently integrating multi-modal information. Specifically, we employ a masked style matrix based on emotion and identity information to control the generation of different motion styles. Temporal modeling of speech and motion is partitioned into style-guided specific feature encoding and shared feature encoding, aiming to learn both inter-modal and intra-modal features. Besides, we propose a geometric loss to enforce the joints' velocity and acceleration coherence among frames. Our framework generates vivid, diverse, and style-controllable motion of arbitrary length through inputting speech and editing identity and emotion. Extensive experiments demonstrate that our method outperforms current co-speech motion generation methods including upper body and challenging full body.
Similar Narrative Retrieval is a crucial task since narratives are essential for explaining and understanding events, and multiple related narratives often help to create a holistic view of the event of interest. To accurately identify semantically similar narratives, this paper proposes a novel narrative similarity metric called Facet-based Narrative Similarity (FaNS), based on the classic 5W1H facets (Who, What, When, Where, Why, and How), which are extracted by leveraging the state-of-the-art Large Language Models (LLMs). Unlike existing similarity metrics that only focus on overall lexical/semantic match, FaNS provides a more granular matching along six different facets independently and then combines them. To evaluate FaNS, we created a comprehensive dataset by collecting narratives from AllSides, a third-party news portal. Experimental results demonstrate that the FaNS metric exhibits a higher correlation (37\% higher) than traditional text similarity metrics that directly measure the lexical/semantic match between narratives, demonstrating its effectiveness in comparing the finer details between a pair of narratives.
Though notable progress has been made, neural-based aspect-based sentiment analysis (ABSA) models are prone to learn spurious correlations from annotation biases, resulting in poor robustness on adversarial data transformations. Among the debiasing solutions, causal inference-based methods have attracted much research attention, which can be mainly categorized into causal intervention methods and counterfactual reasoning methods. However, most of the present debiasing methods focus on single-variable causal inference, which is not suitable for ABSA with two input variables (the target aspect and the review). In this paper, we propose a novel framework based on multi-variable causal inference for debiasing ABSA. In this framework, different types of biases are tackled based on different causal intervention methods. For the review branch, the bias is modeled as indirect confounding from context, where backdoor adjustment intervention is employed for debiasing. For the aspect branch, the bias is described as a direct correlation with labels, where counterfactual reasoning is adopted for debiasing. Extensive experiments demonstrate the effectiveness of the proposed method compared to various baselines on the two widely used real-world aspect robustness test set datasets.
In addition to enhancing traffic safety and facilitating prompt emergency response, traffic incident detection plays an indispensable role in intelligent transportation systems by providing real-time traffic status information. This enables the realization of intelligent traffic control and management. Previous research has identified that apart from employing advanced algorithmic models, the effectiveness of detection is also significantly influenced by challenges related to acquiring large datasets and addressing dataset imbalances. A hybrid model combining transformer and generative adversarial networks (GANs) is proposed to address these challenges. Experiments are conducted on four real datasets to validate the superiority of the transformer in traffic incident detection. Additionally, GANs are utilized to expand the dataset and achieve a balanced ratio of 1:4, 2:3, and 1:1. The proposed model is evaluated against the baseline model. The results demonstrate that the proposed model enhances the dataset size, balances the dataset, and improves the performance of traffic incident detection in various aspects.
Pre-trained computational language models have recently made remarkable progress in harnessing the language abilities which were considered unique to humans. Their success has raised interest in whether these models represent and process language like humans. To answer this question, this paper proposes MulCogBench, a multi-modal cognitive benchmark dataset collected from native Chinese and English participants. It encompasses a variety of cognitive data, including subjective semantic ratings, eye-tracking, functional magnetic resonance imaging (fMRI), and magnetoencephalography (MEG). To assess the relationship between language models and cognitive data, we conducted a similarity-encoding analysis which decodes cognitive data based on its pattern similarity with textual embeddings. Results show that language models share significant similarities with human cognitive data and the similarity patterns are modulated by the data modality and stimuli complexity. Specifically, context-aware models outperform context-independent models as language stimulus complexity increases. The shallow layers of context-aware models are better aligned with the high-temporal-resolution MEG signals whereas the deeper layers show more similarity with the high-spatial-resolution fMRI. These results indicate that language models have a delicate relationship with brain language representations. Moreover, the results between Chinese and English are highly consistent, suggesting the generalizability of these findings across languages.
Teaching is one of many professions for which personalized feedback and reflection can help improve dialogue and discussion between the professional and those they serve. However, professional development (PD) is often impersonal as human observation is labor-intensive. Data-driven PD tools in teaching are of growing interest, but open questions about how professionals engage with their data in practice remain. In this paper, we present ClassInSight, a tool that visualizes three levels of teachers' discussion data and structures reflection. Through 22 reflection sessions and interviews with 5 high school science teachers, we found themes related to dissonance, contextualization, and sustainability in how teachers engaged with their data in the tool and in how their professional vision, the use of professional expertise to interpret events, shifted over time. We discuss guidelines for these conversational support tools to support personalized PD in professions beyond teaching where conversation and interaction are important.
Multi-agent influence diagrams (MAIDs) are a popular form of graphical model that, for certain classes of games, have been shown to offer key complexity and explainability advantages over traditional extensive form game (EFG) representations. In this paper, we extend previous work on MAIDs by introducing the concept of a MAID subgame, as well as subgame perfect and trembling hand perfect equilibrium refinements. We then prove several equivalence results between MAIDs and EFGs. Finally, we describe an open source implementation for reasoning about MAIDs and computing their equilibria.