This work is concerned with the construction and analysis of structure-preserving Galerkin methods for computing the dynamics of rotating Bose-Einstein condensate (BEC) based on the Gross-Pitaevskii equation with angular momentum rotation. Due to the presence of the rotation term, constructing finite element methods (FEMs) that preserve both mass and energy remains an unresolved issue, particularly in the context of nonconforming FEMs. Furthermore, in comparison to existing works, we provide a comprehensive convergence analysis, offering a thorough demonstration of the methods' optimal and high-order convergence properties. Finally, extensive numerical results are presented to check the theoretical analysis of the structure-preserving numerical method for rotating BEC, and the quantized vortex lattice's behavior is scrutinized through a series of numerical tests.
We discuss a connection between a generative model, called the diffusion model, and nonequilibrium thermodynamics for the Fokker-Planck equation, called stochastic thermodynamics. Based on the techniques of stochastic thermodynamics, we derive the speed-accuracy trade-off for the diffusion models, which is a trade-off relationship between the speed and accuracy of data generation in diffusion models. Our result implies that the entropy production rate in the forward process affects the errors in data generation. From a stochastic thermodynamic perspective, our results provide quantitative insight into how best to generate data in diffusion models. The optimal learning protocol is introduced by the conservative force in stochastic thermodynamics and the geodesic of space by the 2-Wasserstein distance in optimal transport theory. We numerically illustrate the validity of the speed-accuracy trade-off for the diffusion models with different noise schedules such as the cosine schedule, the conditional optimal transport, and the optimal transport.
We propose a way to maintain strong consistency and facilitate error analysis in the context of dissipation-based WENO stabilization for continuous and discontinuous Galerkin discretizations of conservation laws. Following Kuzmin and Vedral (J. Comput. Phys. 487:112153, 2023) and Vedral (arXiv preprint arXiv:2309.12019), we use WENO shock detectors to determine appropriate amounts of low-order artificial viscosity. In contrast to existing WENO methods, our approach blends candidate polynomials using residual-based nonlinear weights. The shock-capturing terms of our stabilized Galerkin methods vanish if residuals do. This enables us to achieve improved accuracy compared to weakly consistent alternatives. As we show in the context of steady convection-diffusion-reaction (CDR) equations, nonlinear local projection stabilization terms can be included in a way that preserves the coercivity of local bilinear forms. For the corresponding Galerkin-WENO discretization of a CDR problem, we rigorously derive a priori error estimates. Additionally, we demonstrate the stability and accuracy of the proposed method through one- and two-dimensional numerical experiments for hyperbolic conservation laws and systems thereof. The numerical results for representative test problems are superior to those obtained with traditional WENO schemes, particularly in scenarios involving shocks and steep gradients.
We discuss a connection between a generative model, called the diffusion model, and nonequilibrium thermodynamics for the Fokker-Planck equation, called stochastic thermodynamics. Based on the techniques of stochastic thermodynamics, we derive the speed-accuracy trade-off for the diffusion models, which is a trade-off relationship between the speed and accuracy of data generation in diffusion models. Our result implies that the entropy production rate in the forward process affects the errors in data generation. From a stochastic thermodynamic perspective, our results provide quantitative insight into how best to generate data in diffusion models. The optimal learning protocol is introduced by the conservative force in stochastic thermodynamics and the geodesic of space by the 2-Wasserstein distance in optimal transport theory. We numerically illustrate the validity of the speed-accuracy trade-off for the diffusion models with different noise schedules such as the cosine schedule, the conditional optimal transport, and the optimal transport.
This work aims to extend the well-known high-order WENO finite-difference methods for systems of conservation laws to nonconservative hyperbolic systems. The main difficulty of these systems both from the theoretical and the numerical points of view comes from the fact that the definition of weak solution is not unique: according to the theory developed by Dal Maso, LeFloch, and Murat in 1995, it depends on the choice of a family of paths. A general strategy is proposed here in which WENO operators are not only used to reconstruct fluxes but also the nonconservative products of the system. Moreover, if a Roe linearization is available, the nonconservative products can be computed through matrix-vector operations instead of path-integrals. The methods are extended to problems with source terms and two different strategies are introduced to obtain well-balanced schemes. These numerical schemes will be then applied to the two-layer shallow water equations in one- and two- dimensions to obtain high-order methods that preserve water-at-rest steady states.
We propose an extremely versatile approach to address a large family of matrix nearness problems, possibly with additional linear constraints. Our method is based on splitting a matrix nearness problem into two nested optimization problems, of which the inner one can be solved either exactly or cheaply, while the outer one can be recast as an unconstrained optimization task over a smooth real Riemannian manifold. We observe that this paradigm applies to many matrix nearness problems of practical interest appearing in the literature, thus revealing that they are equivalent in this sense to a Riemannian optimization problem. We also show that the objective function to be minimized on the Riemannian manifold can be discontinuous, thus requiring regularization techniques, and we give conditions for this to happen. Finally, we demonstrate the practical applicability of our method by implementing it for a number of matrix nearness problems that are relevant for applications and are currently considered very demanding in practice. Extensive numerical experiments demonstrate that our method often greatly outperforms its predecessors, including algorithms specifically designed for those particular problems.
This work explores multi-modal inference in a high-dimensional simplified model, analytically quantifying the performance gain of multi-modal inference over that of analyzing modalities in isolation. We present the Bayes-optimal performance and weak recovery thresholds in a model where the objective is to recover the latent structures from two noisy data matrices with correlated spikes. The paper derives the approximate message passing (AMP) algorithm for this model and characterizes its performance in the high-dimensional limit via the associated state evolution. The analysis holds for a broad range of priors and noise channels, which can differ across modalities. The linearization of AMP is compared numerically to the widely used partial least squares (PLS) and canonical correlation analysis (CCA) methods, which are both observed to suffer from a sub-optimal recovery threshold.
A new, more efficient, numerical method for the SDOF problem is presented. Its construction is based on the weak form of the equation of motion, as obtained in part I of the paper, using piece-wise polynomial functions as interpolation functions. The approximation rate can be arbitrarily high, proportional to the degree of the interpolation functions, tempered only by numerical instability. Moreover, the mechanical energy of the system is conserved. Consequently, all significant drawbacks of existing algorithms, such as the limitations imposed by the Dahlqvist Barrier theorem and the need for introduction of numerical damping, have been overcome.
Highly resolved finite element simulations of a laser beam welding process are considered. The thermomechanical behavior of this process is modeled with a set of thermoelasticity equations resulting in a nonlinear, nonsymmetric saddle point system. Newton's method is used to solve the nonlinearity and suitable domain decomposition preconditioners are applied to accelerate the convergence of the iterative method used to solve all linearized systems. Since a onelevel Schwarz preconditioner is in general not scalable, a second level has to be added. Therefore, the construction and numerical analysis of a monolithic, twolevel overlapping Schwarz approach with the GDSW (Generalized Dryja-Smith-Widlund) coarse space and an economic variant thereof are presented here.
A finite element method is introduced to track interface evolution governed by the level set equation. The method solves for the level set indicator function in a narrow band around the interface. An extension procedure, which is essential for a narrow band level set method, is introduced based on a finite element $L^2$- or $H^1$-projection combined with the ghost-penalty method. This procedure is formulated as a linear variational problem in a narrow band around the surface, making it computationally efficient and suitable for rigorous error analysis. The extension method is combined with a discontinuous Galerkin space discretization and a BDF time-stepping scheme. The paper analyzes the stability and accuracy of the extension procedure and evaluates the performance of the resulting narrow band finite element method for the level set equation through numerical experiments.
The use of operator-splitting methods to solve differential equations is widespread, but the methods are generally only defined for a given number of operators, most commonly two. Most operator-splitting methods are not generalizable to problems with $N$ operators for arbitrary $N$. In fact, there are only two known methods that can be applied to general $N$-split problems: the first-order Lie--Trotter (or Godunov) method and the second-order Strang (or Strang--Marchuk) method. In this paper, we derive two second-order operator-splitting methods that also generalize to $N$-split problems. These methods are complex valued but have positive real parts, giving them favorable stability properties, and require few sub-integrations per stage, making them computationally inexpensive. They can also be used as base methods from which to construct higher-order $N$-split operator-splitting methods with positive real parts. We verify the orders of accuracy of these new $N$-split methods and demonstrate their favorable efficiency properties against well-known real-valued operator-splitting methods on both real-valued and complex-valued differential equations.