Complex diseases are caused by a multitude of factors that may differ between patients even within the same diagnostic category. A few underlying root causes may nevertheless initiate the development of disease within each patient. We therefore focus on identifying patient-specific root causes of disease, which we equate to the sample-specific predictivity of the exogenous error terms in a structural equation model. We generalize from the linear setting to the heteroscedastic noise model where $Y = m(X) + \varepsilon\sigma(X)$ with non-linear functions $m(X)$ and $\sigma(X)$ representing the conditional mean and mean absolute deviation, respectively. This model preserves identifiability but introduces non-trivial challenges that require a customized algorithm called Generalized Root Causal Inference (GRCI) to extract the error terms correctly. GRCI recovers patient-specific root causes more accurately than existing alternatives.
Childhood and adolescent obesity rates are a global concern because obesity is associated with chronic diseases and long-term health risks. Artificial intelligence technology has emerged as a promising solution to accurately predict obesity rates and provide personalized feedback to adolescents. This study emphasizes the importance of early identification and prevention of obesity-related health issues. Factors such as height, weight, waist circumference, calorie intake, physical activity levels, and other relevant health information need to be considered for developing robust algorithms for obesity rate prediction and delivering personalized feedback. Hence, by collecting health datasets from 321 adolescents, we proposed an adolescent obesity prediction system that provides personalized predictions and assists individuals in making informed health decisions. Our proposed deep learning framework, DeepHealthNet, effectively trains the model using data augmentation techniques, even when daily health data are limited, resulting in improved prediction accuracy (acc: 0.8842). Additionally, the study revealed variations in the prediction of the obesity rate between boys (acc: 0.9320) and girls (acc: 0.9163), allowing the identification of disparities and the determination of the optimal time to provide feedback. The proposed system shows significant potential in effectively addressing childhood and adolescent obesity.
We develop a new approach for estimating average treatment effects in observational studies with unobserved group-level heterogeneity. We consider a general model with group-level unconfoundedness and provide conditions under which aggregate balancing statistics -- group-level averages of functions of treatments and covariates -- are sufficient to eliminate differences between groups. Building on these results, we reinterpret commonly used linear fixed-effect regression estimators by writing them in the Mundlak form as linear regression estimators without fixed effects but including group averages. We use this representation to develop Generalized Mundlak Estimators (GMEs) that capture group differences through group averages of (functions of) the unit-level variables and adjust for these group differences in flexible and robust ways in the spirit of the modern causal literature.
In experiments that study social phenomena, such as peer influence or herd immunity, the treatment of one unit may influence the outcomes of others. Such "interference between units" violates traditional approaches for causal inference, so that additional assumptions are often imposed to model or limit the underlying social mechanism. For binary outcomes, we propose new estimands that can be estimated without such assumptions, allowing for interval estimates assuming only the randomization of treatment. However, the causal implications of these estimands are more limited than those attainable under stronger assumptions, showing only that the treatment effects under the observed assignment varied systematically as a function of each unit's direct and indirect exposure, while also lower bounding the number of units affected.
Intracranial hemorrhage (ICH) is a life-threatening medical emergency that requires timely and accurate diagnosis for effective treatment and improved patient survival rates. While deep learning techniques have emerged as the leading approach for medical image analysis and processing, the most commonly employed supervised learning often requires large, high-quality annotated datasets that can be costly to obtain, particularly for pixel/voxel-wise image segmentation. To address this challenge and facilitate ICH treatment decisions, we introduce a novel weakly supervised method for ICH segmentation, utilizing a Swin transformer trained on an ICH classification task with categorical labels. Our approach leverages a hierarchical combination of head-wise gradient-infused self-attention maps to generate accurate image segmentation. Additionally, we conducted an exploratory study on different learning strategies and showed that binary ICH classification has a more positive impact on self-attention maps compared to full ICH subtyping. With a mean Dice score of 0.44, our technique achieved similar ICH segmentation performance as the popular U-Net and Swin-UNETR models with full supervision and outperformed a similar weakly supervised approach using GradCAM, demonstrating the excellent potential of the proposed framework in challenging medical image segmentation tasks. Our code is available at //github.com/HealthX-Lab/HGI-SAM.
Segmentation and spatial alignment of ultrasound (US) imaging data acquired in the in first trimester are crucial for monitoring human embryonic growth and development throughout this crucial period of life. Current approaches are either manual or semi-automatic and are therefore very time-consuming and prone to errors. To automate these tasks, we propose a multi-atlas framework for automatic segmentation and spatial alignment of the embryo using deep learning with minimal supervision. Our framework learns to register the embryo to an atlas, which consists of the US images acquired at a range of gestational age (GA), segmented and spatially aligned to a predefined standard orientation. From this, we can derive the segmentation of the embryo and put the embryo in standard orientation. US images acquired at 8+0 till 12+6 weeks GA were used and eight subjects were selected as atlas. We evaluated different fusion strategies to incorporate multiple atlases: 1) training the framework using atlas images from a single subject, 2) training the framework with data of all available atlases and 3) ensembling of the frameworks trained per subject. To evaluate the performance, we calculated the Dice score over the test set. We found that training the framework using all available atlases outperformed ensembling and gave similar results compared to the best of all frameworks trained on a single subject. Furthermore, we found that selecting images from the four atlases closest in GA out of all available atlases, regardless of the individual quality, gave the best results with a median Dice score of 0.72. We conclude that our framework can accurately segment and spatially align the embryo in first trimester 3D US images and is robust for the variation in quality that existed in the available atlases.
Cardiovascular diseases (CVD) are the leading cause of death globally, and early detection can significantly improve outcomes for patients. Machine learning (ML) models can help diagnose CVDs early, but their performance is limited by the data available for model training. Privacy concerns in healthcare make it harder to acquire data to train accurate ML models. Federated learning (FL) is an emerging approach to machine learning that allows models to be trained on data from multiple sources without compromising the privacy of the individual data owners. This survey paper provides an overview of the current state-of-the-art in FL for CVD detection. We review the different FL models proposed in various papers and discuss their advantages and challenges. We also compare FL with traditional centralized learning approaches and highlight the differences in terms of model accuracy, privacy, and data distribution handling capacity. Finally, we provide a critical analysis of FL's current challenges and limitations for CVD detection and discuss potential avenues for future research. Overall, this survey paper aims to provide a comprehensive overview of the current state-of-the-art in FL for CVD detection and to highlight its potential for improving the accuracy and privacy of CVD detection models.
Whole slide image (WSI) analysis has become increasingly important in the medical imaging community, enabling automated and objective diagnosis, prognosis, and therapeutic-response prediction. However, in clinical practice, the ever-evolving environment hamper the utility of WSI analysis models. In this paper, we propose the FIRST continual learning framework for WSI analysis, named ConSlide, to tackle the challenges of enormous image size, utilization of hierarchical structure, and catastrophic forgetting by progressive model updating on multiple sequential datasets. Our framework contains three key components. The Hierarchical Interaction Transformer (HIT) is proposed to model and utilize the hierarchical structural knowledge of WSI. The Breakup-Reorganize (BuRo) rehearsal method is developed for WSI data replay with efficient region storing buffer and WSI reorganizing operation. The asynchronous updating mechanism is devised to encourage the network to learn generic and specific knowledge respectively during the replay stage, based on a nested cross-scale similarity learning (CSSL) module. We evaluated the proposed ConSlide on four public WSI datasets from TCGA projects. It performs best over other state-of-the-art methods with a fair WSI-based continual learning setting and achieves a better trade-off of the overall performance and forgetting on previous task
We consider the problem of explaining the predictions of graph neural networks (GNNs), which otherwise are considered as black boxes. Existing methods invariably focus on explaining the importance of graph nodes or edges but ignore the substructures of graphs, which are more intuitive and human-intelligible. In this work, we propose a novel method, known as SubgraphX, to explain GNNs by identifying important subgraphs. Given a trained GNN model and an input graph, our SubgraphX explains its predictions by efficiently exploring different subgraphs with Monte Carlo tree search. To make the tree search more effective, we propose to use Shapley values as a measure of subgraph importance, which can also capture the interactions among different subgraphs. To expedite computations, we propose efficient approximation schemes to compute Shapley values for graph data. Our work represents the first attempt to explain GNNs via identifying subgraphs explicitly and directly. Experimental results show that our SubgraphX achieves significantly improved explanations, while keeping computations at a reasonable level.
A community reveals the features and connections of its members that are different from those in other communities in a network. Detecting communities is of great significance in network analysis. Despite the classical spectral clustering and statistical inference methods, we notice a significant development of deep learning techniques for community detection in recent years with their advantages in handling high dimensional network data. Hence, a comprehensive overview of community detection's latest progress through deep learning is timely to both academics and practitioners. This survey devises and proposes a new taxonomy covering different categories of the state-of-the-art methods, including deep learning-based models upon deep neural networks, deep nonnegative matrix factorization and deep sparse filtering. The main category, i.e., deep neural networks, is further divided into convolutional networks, graph attention networks, generative adversarial networks and autoencoders. The survey also summarizes the popular benchmark data sets, model evaluation metrics, and open-source implementations to address experimentation settings. We then discuss the practical applications of community detection in various domains and point to implementation scenarios. Finally, we outline future directions by suggesting challenging topics in this fast-growing deep learning field.
Object detection typically assumes that training and test data are drawn from an identical distribution, which, however, does not always hold in practice. Such a distribution mismatch will lead to a significant performance drop. In this work, we aim to improve the cross-domain robustness of object detection. We tackle the domain shift on two levels: 1) the image-level shift, such as image style, illumination, etc, and 2) the instance-level shift, such as object appearance, size, etc. We build our approach based on the recent state-of-the-art Faster R-CNN model, and design two domain adaptation components, on image level and instance level, to reduce the domain discrepancy. The two domain adaptation components are based on H-divergence theory, and are implemented by learning a domain classifier in adversarial training manner. The domain classifiers on different levels are further reinforced with a consistency regularization to learn a domain-invariant region proposal network (RPN) in the Faster R-CNN model. We evaluate our newly proposed approach using multiple datasets including Cityscapes, KITTI, SIM10K, etc. The results demonstrate the effectiveness of our proposed approach for robust object detection in various domain shift scenarios.